透過您的圖書館登入
IP:13.58.242.200
  • 學位論文

SOI波導麥克森干涉儀作為分波多工光網路之溫度感測應用

Study of WDM Optical SOI Waveguide Michelson Interferometer Temperature Sensor Networks

指導教授 : 曹士林
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文提出一種新型高精確度SOI 波導麥克森溫度干涉儀:經由一系列數值運算分析,證明我們所設計的SOI波導感測器精確度將一般光纖布拉格光柵感測器高20倍。除此之外,其帶通響應之FWHM也較一般光纖或SOI波導布拉格光柵感測器要減小許多。 接著,我們將此新型波導感測器應用於分波多工光通訊監測網路中,經由分別對三種不同網路拓樸(topology)結構:階梯形(Bus)、星型(Star)、樹形(Tree)作訊噪比(SNR)分析,作為滿足未來高頻寬及高效能之分波多工光纖通訊網路監測使用。

並列摘要


In this thesis, the author has designed and analyzed a high accurate SOI optical waveguide Michelson interferometer sensor for temperature monitoring. According to the numerical analysis of power reflective spectra of waveguide Michelson interferometers, the temperature sensing of waveguide SOI Michelson interferometer sensor can improve at least 20 times than fiber Bragg grating temperature sensor. Moreover, the SOI waveguide interferometer sensor we designed presents high sensitivity than pure single waveguide Bragg grating sensor and fiber Bragg grating sensor by adjusting the length of the two interferomertric arms. The full width at half maximum (FWHM) of the frequency responses of passband of SOI waveguide Michelson interferometer can be designed much smaller than fiber and waveguide Bragg grating sensors for sensitivity improvement. Owing to the great advantages of SOI waveguide Michelson interferometer mentioned above. We try to apply and analyze the SOI waveguide Michelson interferometer we designed for temperature sensing in bus, tree and star topologies based on wavelength-division-multiplexing (WDM) network, respectively. We considered the signal-to-noise ratio (SNR) to evaluate the performance of SOI waveguide Michelson interferometer sensors with WDM network in these three topologies for fulfilling the demands of bandwidth and new services in novel WDM fiber communication networks.

參考文獻


[2] H. D. Simonsen, R. Paetsch, and J. R. Dunphy, “Fiber Bragg grating demonstration in glass-fiber reinforced polyester composite,” 1st European Conf. on Smart Structures and Materials, pp. 73-76, 1992.
[3] W. W. Morey, G. Meltz, and J. M. Weiss, “Separation of temperature and strain measurands in fiber Bragg grating sensors,” 1st European Conf. on Smart Structures and Materials, pp. 454-456, 1992.
[5] S. -L. Tsao, and J. Wu, “Highly accurate temperature sensor using two fiber Bragg gratings”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 894-897, 1996.
[6] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett., vol. 18, pp. 1370, 1993.
[7] J. Jung, H. Nam, and B. Lee, “Fiber Bragg grating temperature sensor with controllable high sensitivity,” IEEE, pp. 405-406, 1998.

被引用紀錄


張浩銘(2009)。共路徑非等光程偏光干涉儀及其在多工式光纖光柵感測器之應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0901200911461200

延伸閱讀