透過您的圖書館登入
IP:3.134.87.95
  • 學位論文

Nafion溶液成膜的物理性質與形態學研究

Physical Properties and Morphology of Nafion Membranes Prepared from Various Solutions

指導教授 : 林秀麗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


Nafion質子交換膜是目前使用於燃料電池最普遍的膜材。本論文 使用DuPont公司生產Nafion溶液分別以醇/水溶液及DMF溶液置換後,在室溫及120℃下揮發成膜。室溫下揮發的薄膜,薄膜性質是易脆的無法完整從培養皿中取出其機械性質差﹔用DMF置換DuPont公司Nafion溶液中醇/水溶液在高溫下揮發成膜,有較好的機械性質,經水膨潤後外型是柔軟、有彈性、有凝聚性的。薄膜溶劑含量測定數據顯示,室溫揮發形成的薄膜溶劑含量明顯高於在高溫下揮發形成的薄膜,室溫成膜後加熱annealing時間越久產生的物理交聯越多且結晶度越大,膜材越不容易被水膨潤,水含量也較低,薄膜膨潤過程中溫度也會影響其含水率。DSC熱分析數據顯示,加熱annealing處理可促進Nafion分子產生規則排列形成很大的結晶區,且隨著加熱annealing時間增加,其結晶區熔解吸熱也越大。以AC-impedance量測得到的導電度,我們可看到導電度隨著膜材加熱的時間增加而降低。在WAXD分析數據顯示,結晶度隨著加熱時間增加而增加,且Nafion膜以水膨潤後會使結晶度稍微下降。以SAXS研究Nafion薄膜的微結構:隨著加熱annealing時間增加,屬於主鏈氟碳化合物產生部份結晶的長區間間距增加,ionic cluster的長區間間距卻隨著加熱annealing時間增加而減小,用水膨潤後溼膜ionic cluster的長區間間距明顯大於乾膜。分析Nafion膜內的結晶粒子及離子聚集區可能是介於lamellae及球體﹙spherulite﹚結構之間。

並列摘要


Nafion ion exchange membrane is widely used as membrane of polymer electrolyte membrane fuel cell (PEMFC). In this thesis, we prepare Nafion solutions by replacing solvents of Nafion solutions with methanol/H2O, ethanol/H2O, propanol/H2O, and DMF (N,N-dimethyl formamide) solvents.The Nafion/alcohol/ H2O solutions were evaporated at room temperature to prepare Nafion membranes, which were brittle and had poor mechanical properties. However, these membranes crystallized after annealing at 120℃. The Nafion/DMF solutions were evaporated at 120℃ to prepare membranes. DSC and WAXD data revealed that the degree of crystallinity of Nafion membrane increased with increasing annealing time, which leaded to decreases in the degree of swelling of membrane in water and the ionic conductivity as annealing time increased. SAXS data showed that the long spacing of crystalline domain increased and the long spacing of ionic cluster decreased with increasing annealing time. The long spacing of ionic cluster increased after the membrane were swelled with water.

參考文獻


1. Aldebert P.; Dreyfus B., “Small-angle neutron scattering of perfluorosulfonated ionomers in solution”, Macromolecules, 1986, 19, 2651-2653.
2. Arico A. S.; Creti P.; Poltarzewski Z.; Mantegna R.; Antonucci V., “Characterization of direct methanol fuel cell components by electron microscopy and X-ray microchemical analysis”, Materials Chemistry and Physics, 1997, 47, 257-262
3. Antonucci P. L.; Arico A. S.; Creti P.; Ramunni E.; Antonucci V., “Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation”, Solid State Ionics, 1999, 125, 431-437
5. Cirkel P. A. and Okada T., “Equilibrium aggregation in perfluorinated ionomer solution”, Macromolecules, 1999, 32, 531-533.
6. Cirkel P. A. and Okada T., “A comparison of mechanical and electrical percolation during the gelling of Nafion solution”, Macromolecules, 2000, 33, 4921-4925.

被引用紀錄


曹智凱(2011)。一種估算直接甲醇燃料電池之甲醇濃度之方法〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00211
郭書榕(2009)。具有不同電極結構之直接甲醇燃料電池的交流阻抗量測研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00516
吳佳奇(2010)。離子高分子金屬複合材料之微幫浦組裝 及其電致動現象模擬〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201001116
曹志豪(2009)。離子性高分子與金屬複合材料致動元件應用於植入式藥物釋放系統之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200901343
賴耀東(2007)。利用離子性聚合物-金屬複合材料於尿道人工括約肌之研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.01131

延伸閱讀