透過您的圖書館登入
IP:18.224.64.226
  • 學位論文

微生物 Pseudomonas aeruginosa PAO1的葡萄糖去氫化酶於生物燃料電池之應用

Application of Glucose Dehydrogenase of Pseudomonas aeruginosa PAO1 on Biofuel cell

指導教授 : 康世旭

摘要


本研究從 Pseudomonas aeruginosa PAO1中分離純化葡萄糖去氫化酶 (GDHPAO1),利用其高催化效率、廣泛基質特異性以及對氧不敏感的特性,探討 P. aeruginosa PAO1之葡萄糖去氫化酶作為生物燃料電池的陽極觸媒的可能性。利用 1.5 % Triton X-100洗出位於細胞膜上的葡萄糖去氫化酶以 DEAE Sepharose陰離子交換樹脂管柱進行分離純化,結果指出 P. aeruginosa PAO1存有二種以複合體型態存在的葡萄糖去氫化酶。將所純化的葡萄糖去氫化酶以定電位法進行分析,於固定電壓 0.35 V下,兩種型態的葡萄糖去氫化酶每一單位分別可產生 1814 ?嫀/cm2、2748 ?嫀/cm2的電流密度。此結果顯示 P. aeruginosa PAO1的葡萄糖去氫化酶做為生物燃料電池的陽極酵素,是相當具有發展潛力的。

並列摘要


Biofuel cells are miniature power-generating systems that convert chemical energy to electrical energy by using biocatalysts to catalyze the oxidation of organic substances. Glucose dehydrogenase is an ideal anodic catalyst for biofuel cells because of its high catalytic efficiency, wide substrate specificity and insensitivity to oxygen. It is inherently limited to improve the efficiency of the biofuel cell system by enzyme modifications, immobilizations and electrodes modifications. To overcome these limitations, a powerful anode catalyst is essential. The glucose dehydrogenase in the membrane was washed by 1.5 % Triton X-100. Two types of glucose dehydrogenase in Pseudomonas aeruginosa PAO1 were co-purified by the DEAE sepharose chromatography, and existed in the form of complex. The activity of the glucose dehydrogenase was determined by dye-reduction method during the purification processes. By constant-potential method at 0.35 V and 25 ℃, using Ag/AgCl as a reference, one unit of GDHA and GDHB had a current density of 1814 ?嫀/cm2 and 2748 ?嫀/cm2, respectively. Compared with the current density of glucose oxidase of Aspergillus niger, the glucose dehydrogenase of P. aeruginosa PAO1 was a potential anodic catalyst in biofuel cell system.

並列關鍵字

biofuel cell glucose dehydrogenase

參考文獻


1. Kordesch, K. & Simader, G. Fuel Cells and Their Applications. Hardcover (1996).
2. Matsushita, K., Toyama, H., Yamada, M. & Adachi, O. Quinoproteins: structure, function, and biotechnological applications. Appl. Microbiol. Biotechnol. 58, 13-22 (2002).
3. Young, T. G., L. Hadjipetrou & Lilly., M. D. Theoretical aspects of biochemical fuel cells. Biotechnol. Bioeng. 8, 581-93 (1966).
4. Katz, E. & Willner, I. A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc. 125, 6803-13 (2003).
5. Katz, E., Shipway, A. N. & Willner, I. Handbook of Fuel Cells – Fundamentals, Technology and Applications. John Wiley & Sons (2003).

被引用紀錄


Tu, P. P. N. (2013). 醫病關係對服務接觸與病患忠誠度之影響的中介效果 [doctoral dissertation, Chang Jung Chrisian University]. Airiti Library. https://doi.org/10.6833/CJCU.2013.00144
林佩君(2008)。影響病患完成雙向轉診相關因素之研究〔碩士論文,中臺科技大學〕。華藝線上圖書館。https://doi.org/10.6822/CTUST.2008.00004
許慧嫻(2017)。探討聯合執業牙醫診所就診民眾關係品質、知覺價值、滿意度與忠誠度之相關性〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700353
顏仲毅(2007)。美容整形手術之病患滿意度與忠誠度模式建構,與其影響因子分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.03083
林珈羽(2012)。門診服務品質、病患情緒與醫病關係品質關聯性之研究—以某精神科教學醫院為例〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-0305201210333451

延伸閱讀