透過您的圖書館登入
IP:3.141.41.187
  • 學位論文

低功率雷射照射對脂肪幹細胞與骨前趨細胞之影響:應用於神經與硬骨組織工程之研究

The effect of low level laser irradiation in adipose derived stem cells and osteoprogenitor cell: for nerve and bone tissue engineering

指導教授 : 黃琮濱
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


低功率雷射治療法應用於組織工程已有近四十年的歷史,數十年來的研究對於低功率雷射治療法的效能並沒有定論,不同種類、不同能量皆具有不同的功效,深具開發的潛力,因此本研究使用波長660 nm,頻率999 Hz之鋁鎵銦磷低功率雷射分別就硬骨修復及神經修復兩個議題作探討。 在硬骨修復方面,以雷射刺激骨前趨細胞株(MC3T3-E1)後發現,MC3T3-E1在照射刺激30分鐘後有顯著的細胞增生現象,且在分化表現上明顯較控制組延遲;接著將細胞植覆於GCT骨科複合材料並給予雷射刺激,發現雷射GCT組分化的時間較雷射組來的提前;之後以雷射刺激新生鼠頭蓋骨,發現雷射組的頭蓋骨缺損處也有明顯的組織增生現象。在神經修復方面,我們以低功率雷射刺激大鼠脂肪幹細胞(ADSCs)後發現,雷射組的ADSCs細胞活性明顯低於控制組;但在基因表現上,雷射組的ADSCs則較控制組有更顯著的BDNF,NGF及GDNF表現;將ADSCs先經由神經誘導後再給予雷射刺激,結果經雷射組的活性明顯較控制組來的良好,同樣的結果也有出現在給予ADSCs雷射刺激後立即誘導其朝向神經及成骨分化的實驗中,顯示低功率雷射有助於ADSCs的分化。接著以雷射刺激新生鼠坐骨神經組織也發現雷射刺激可顯著提升新生鼠坐骨神經組織的增生,在將坐骨神經植覆於GGT神經導管材料後,雷射GGT組也有相同的功效。 本研究結果顯示低功率雷射對於骨前趨細胞、頭蓋骨組織及坐骨神經組織具有促進其增生的成效,而低功率雷射亦可促進ADSCs神經分化,在結合生醫材料後也有相當的成效,因此低功率雷射具有應用於硬骨及神經組織工程之潛力。

並列摘要


Low level laser therapy (LLLT) has been applied in tissue engineering for four decades. The different kinds of or power ranges of LLLT have different applications. In this thesis, we focus on discussing the effect of LLLT with low-level AlGaInP diode laser (wavelength 660 nm, frequency 999 Hz) on the bone and nerve repair respectively. In the aspect of bone repair, we use the laser to illuminate the MC3T3-E1 cell line. It is found that the cell viability of MC3T3-E1 cell line significantly increased after the thirty minutes irradiation. Moreover, its cell differentiation occurs latter than the control group. Next, the cell is seeded at orthopedic composite (GCT) and then stimulated by the laser. We find out that the cell differentiation in the laser GCT group occurs earlier than in the laser group. Furthermore, we also use the laser to stimulate rat calvarial bones and then observe the markedly new formed tissue around the defective area. In terms of nerve repair, we use the low-power laser to stimulate the adipose-derived stem cells ( ADSCs ) of a rat. It obviously demonstrates that the cell viability of ADSCs in the laser group is less active than in the control group. However, in gene expression, the former shows more significant results in BDNF, NGF, and GDNF expression than the latter. Besides, we apply the laser to stimulate the ADSCs after the nerve induction. The result represents that the ADSCs in the laser group is more active than in the control group. On the other hand, ADSCs are immediately induced toward the neural and osteogenic differentiation after being irradiated by the laser. We can observe the same result as above. Therefore, it indicates that the low level laser can advance ADSCs differentiation. Finally, we also find that the LLLT can enhance the cell viability in neonatal rat sciatic nerve. We also produce the same result when the sciatic nerve is seeded at the nerve conduit materials (GGT) and then stimulated by the laser. The result of this study suggests that LLLT can promote increasing osteoprogenitor cell, nerve cells, and ADSCs neuron differentiation. For this reason, there is the high potential for applying LLLT to bone and nerve tissue engineering.

參考文獻


67. 馮聖偉. (2006). 靜磁場促進培養於聚乳酸試片似骨母細胞的生長. 臺北醫學大學牙醫學系碩博士班 碩士論文.
2. Yaakobi, T., Maltz, L., & Oron, U. (1996). Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 59, 297-301.
3. Kamali, F., Bayat, M., Torkaman, G., Ebrahimi, E., & Salavati, M. (2007). The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B, 88(1), 11-15.
4. Khullar, S. M., Emami, B., Westermark, A., & Haanaes, H. R. (1996). Effect of low-level laser treatment on neurosensory deficits subsequent to saggittal split ramus osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 82, 132-139.
5. Miloro, M., Halkias, L. E., Mallery, S., Travers, S., & Rashid, R. G. (2002). Low-level laser effect on neural regeneration in Gore-Tex tubes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 93(1), 27-34.

延伸閱讀