透過您的圖書館登入
IP:13.58.8.127
  • 學位論文

應用分子動力學模擬聚丙烯在奈米塗佈技術之研究

An Investigation of Polypropylene in Nanocoating Process Using Molecular Dynamics

指導教授 : 張榮語

摘要


奈米級的薄膜應用甚廣,從傳統的膠帶或塗料產業到熱門的半導體面版產業,新興的生化醫藥產業等,眾多材料跟產品可以應用發展,因此奈米薄膜具有極大的市場與價值,引起了工業與學界的熱烈研究。而製造薄膜的技術甚多,塗佈是常見的加工技術之一。本研究應用分子動力學(Molecular Dynamics)模擬聚丙烯(Polypropylene)在奈米尺度下的行為,且應用在浸沾式塗佈工程(Dip Coating)上;詳細敘述如下。 首先,利用分子動力學模擬聚丙烯,觀察單條分子鏈從高溫降溫至低溫的型態變化,並擴大系統至數條分子鏈,求得玻璃轉化溫度,接著改變分子量,獲得分子量對應轉化溫度的圖形,比對後發現與文獻上結果符合,表示本研究模擬的高分子符合現實情形,因此可以應用在模擬加工系統階段。 接著,利用分子動力學模擬奈米尺度下浸沾式塗佈系統,觀察加工過程中的現象,且以分子觀點探討各性質的變化,並且加以解釋產生的物理現象,如吸附、滑動、蠕變等行為。接著,改變系統溫度,發覺橡膠態下溫度越高,抽起的高分子也越多,但適合抽起速度也越快。抽起速度越快,帶起高分子越多,但滑動現象較明顯,高分子吸附在基板程度較差。最後,改變基板金屬與高分子的作用力參數,發覺金屬與跟高分子吸引力越大,則高分子呈現系統平均壓力也越小。

並列摘要


The application of Nano-film techonology is very popular today. Many kinds of materials and products from trantional to contemporary industry could be developed prosperously, such as adhesive tape, coating, LCD , and semi-couductor. It does imply that the Nano-film technology definitely not only has been having huge market and value, but also evoking massive concern of the scientists from academic field and industries as well. In this study, the reaearcher simulated polypropylene by molecular dynamics in Dip-coating process. The detail will be described as follows. First of all, the researcher based on molecular dynamics to simulate polypropylene chain during the process of dropping temperature in order to observe the chang of polymer conformation under different temperature. Then, the reaearcher could get the glass-transition temperature, and the results exactly matched with the consequences of the literature. Second, the researcher simulated polypropylene in Dip-coating process in nano scale by MD to observe the possible phenomena in the process and note the variation of the molecular properties. Furthermore, the researcher will interprete the physic phenomenon took place in the process, like absorbtion, slip and creep. Finally the researcher tried to chang the temperature and the velocity of board, and then found that the higher temperature, the more polymer would be dragged out. Meanwhile, the higher drag-out velocity, the more polymers would be dragged out, however, the slip pheonamena would be more serious.

參考文獻


[2] R. E. Tuzun, D. W. Noid, B. G. sumpter, R. C. Merkle, "Dynamics of fluid flow inside carbon nanotubes" Nanotechnology, vol.7(1996), pp.241-246.
[3] M. Matsumoto, S. Saito, L. Ohmine, “Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing”, Nature, vol.416(2002), pp409-413.
[6] K.J. Ruschak, Chem. Eng. Sci., 31, 1057~1066 (1976).
[8] J. Van Rossum, Appl. Sci. Res. A., 7, 121~144 (1958).
[9] L. Landau and B. Levich, Acta Physicochim. USSR, 17, 42~54 (1942).

被引用紀錄


黃丘宏(2007)。應用分子動力學計算奈米尺度下乙醇及聚丙烯溶液物性之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1411200715090441
洪玉蕙(2008)。立體正規性對聚丙烯在溶液中的影響:分子動力學模擬〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2002201314245611

延伸閱讀