透過您的圖書館登入
IP:18.217.6.114
  • 學位論文

氧電漿處理閘極優先具有氮化銦鎵單量子井之氮化鋁鎵/氮化鎵高電子遷移率電晶體研究

Study on Gate-First AlGaN/GaN High Electron Mobility Transistor with an InGaN Single Quantum Well Using Oxygen Plasma Treatment

指導教授 : 黃智方
本文將於2026/11/17開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文嘗試使用氧電漿處理法(oxygen plasma treatment)製程鈍化p型氮化鎵的效果來製作高電子遷移率電晶體(High Electron Mobility Transistor, HEMT)以及發光高電子遷移率電晶體(Light Emitting High Electron Mobility Transistor, LE-HEMT),並且同時進行p型氮化鎵乾蝕刻的元件作為對照組,藉此比較氧電漿處理法製程對元件所帶來的影響。 從實驗結果來看,我們展示了閾值電壓(threshold voltage, Vth)為0.5 V的常關型氮化鋁鎵/氮化鎵高電子遷移率電晶體,其閾值電壓與對照組相比十分接近,而其片電阻(sheet resistance, Rsh)為2590 Ω/□,在閘極電壓為4 V時,特徵導通電阻(specific on-state resistance, Ron,sp)為2.48 mΩ-cm2,閘極6 V時的飽和電流(saturation current, Isat)為183.81 mA/mm。此外,經過氧電漿處理的發光高電子遷移率電晶體的閾值電壓則為 -2.7 V,閘極4 V的特徵導通電阻為2.76 mΩ-cm2,閘極6 V時的飽和電流為279.91 mA/mm。 至於發光高電子遷移率電晶體的電致發光,本實驗發現氧電漿處理法與p型氮化鎵乾蝕刻法相比,並不會改變發光波長,並且在原本的磊晶層新增了高濃度n型電流擴散層之後,成功使發光區域變均勻,不過電晶體的閘極控制力也因此消失。

並列摘要


In this thesis, oxygen plasma treatment process to passivate p-GaN is used to fabricate HEMT(High Electron Mobility Transistor) and LE-HEMT(Light Emitting High Electron Mobility Transistor). At the same time, these transistors fabricated by p-GaN dry etch process are compared as the control group. From the experiment, normally off AlGaN/GaN HEMTs with a Vth(thresholdvoltage)=0.5 V are demonstrated. Vth is roughly the same compared with the control group. Rsh(sheet resistance) is 2590 Ω/□. When the gate voltage is 4 V, Ron,sp(specific on-state resistance) is 2.48 mΩ-cm2. When the gate voltage is 6 V, Isat(saturation current) is 183.81 mA/mm. On the other hand, the Vth of the oxygen plasma treated LE-HEMT is -2.7 V, and when the gate voltage is 4 V, the differential Ron,sp is 2.76 mΩ-cm2. When the gate voltage is 6 V, Isat is 279.91 mA/mm. As for the eletroluminescence of the LE-HEMT, we discover that oxygen plasma treatment will not change the wavelength of the emitted light compared with the control group. When an n+ current spreading layer is inserted in the epi, the light emitting region is more uniform, but the gate control of the channel in the transistor will be lost.

並列關鍵字

AlGaN/GaN HEMT LE-HEMT InGaN Oxygen

參考文獻


[1]L. Spaziani and L. Lu, “Silicon, GaN and SiC: Theres Room for All: An Application Space Overview of Device Considerations,” 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 8–11, May 2018.
[2]P. Perlin, I. Gorczyca, T. Suski, P. Wisniewski, S. Lepkowski, N. E. Christensen, A. Svane, M. Hansen, S. P. Denbaars, B. Damilano, N. Grandjean, and J. Massies, “Influence of Pressure on the Optical Properties of InxGa1−xN Epilayers and Quantum Structures,” Physical Review B, vol. 64, no. 11, p. 115319, 2001.
[3]Y. Cai, X. Zou, C. Liu, and K. M. Lau, “Voltage-Controlled GaN HEMT-LED Devices as Fast-Switching and Dimmable Light Emitters,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 224–227, 2018.
[4]M. A. Khan, J. N. Kuznia, J. M. V. Hove, N. Pan, and J. Carter, “Observation of a Two‐Dimensional Electron Gas in Low Pressure Metalorganic Chemical Vapor Deposited GaN‐AlxGa1−xN Heterojunctions,” Applied Physics Letters, vol. 60, no. 24, pp. 3027–3029, 1992.
[5]N.-Q. Zhang, S. Keller, G. Parish, S. Heikman, S. Denbaars, and U. Mishra, “High Breakdown GaN HEMT with Overlapping Gate Structure,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 421–423, 2000.

延伸閱讀