透過您的圖書館登入
IP:18.222.25.112
  • 學位論文

在微流體晶片中產生液珠及鼠胚培養上的應用

Producing Droplets in a Microfluidic Chip and its applications on Mouse Embryos Culturing

指導教授 : 饒達仁

摘要


本研究為一生醫微流體晶片,使用聚二甲基矽(PDMS)製作簡單、不耗時和生物相容性優等特性,作為製作流道的主要材質,製作出一個多功能液珠產生器,期望能進行任何生物上或物理上的實驗。此晶片藉由水和油為兩互不相溶液體的特性,以微流體聚焦(Flow Focusing)為流道結構,在油浴中形成乳化液珠(Water-in-oil droplet)。在晶片中的生成區,生成體積大小約0.5 μl ~ 2.2 μl左右的液珠。欲保留的液珠,在篩選區經由人為的操控去到擴充區,擴充區可視使用者的需求,藉由T型結構(T-junction)注入的方式,將原液珠的體積擴大至最多10 μl,大小有別於其他研究。被擴充後的液珠可再流向置換區,將液珠內的液體提取出流道。 在培養老鼠胚胎(embryo)的應用上,吾人以聚苯乙烯微球(PS beads)作為測試,每個PS beads會在液珠生成的過程中,被不同的液珠所封裝,藉由液珠具有動態的特性,達到日後仿母體輸卵管環境動態培養的目的。流入培養液擴充區的液珠會被注入更多的培養液,讓體積增大到5 μl以上,以達到傳統培養胚胎,從二細胞(2-cell)發育至囊胚(Blastocyst)的培養液體積的需求。此外,目前已由實驗發現,在液珠內靜態培養組的成功率(87.5%)略低於傳統組(95%)。

關鍵字

微流體晶片 受精卵 微液珠

並列摘要


In this study, we created a biomedical microfluidic chip using polydimethylsiloxane (PDMS) as our main material of multifunction droplet generator. By the feature that water and oil are immiscible, the generator uses flow focusing structure to generate droplets with the volume from 0.5 μl to 2.2 μl at Generating Area. The droplets we need would be manually manipulated toward Enlarging Area at Sorting Area. Depending on the request of the user, Enlarging Area could enlarge the volume of a droplet to at most 10 μl other than the past studies. The enlarged droplet could be manipulated to Replacing Area and the liquid of the droplet could be absorbed outside the chip. We used PS beads as our tester on the application of culturing embryos, and let PS beads be encapsulated by different medium droplets to achieve our idea of mimicking the environment of oviduct of female body to culture embryos. The droplets flowed to Enlarging Area would be enlarged to 5μl by injecting more medium to satisfy the requirement of culturing. In addition, we found that the success rate of static droplet culture group (87.5%) is slightly lower than that of the conventional group (95%).

並列關鍵字

Microfluidic chip embryo micro-droplet

參考文獻


[1] C. Eunpyo, and P. Jungyul, "High-throughput microparticle separation using gradient traveling wave dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, p. 125014, 2009.
[2] B. E. Debs, I. V. Balyasnikova, A. D. Griffiths, and C. A. Merten, "Functional single-cell hybridoma screening using droplet-based microfluidics," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 11570-11575, 2012.
[3] M. Najah, and M. Ryckelynck, "Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics," Analytical Chemistry, vol. 84, pp. 1202-1209, 2012.
[4] L. Mazutis, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, "Single-cell analysis and sorting using droplet-based microfluidics," Nature Protocols, vol. 8, pp. 870-891, 2013.
[5] 賴昀立, "介電泳生醫微流道應用於體外授精," 國立清華大學, 2016.

延伸閱讀