透過您的圖書館登入
IP:13.59.195.118
  • 學位論文

應用延伸閘極電雙層場效電晶體感測器研究細胞膜電位在不同胞外刺激下的變化

Extended Gate Electric-Double-Layer (EDL) Field-Effect Transistors for Investigation in the Change of Transmembrane Potential under Extracellular Stimuli

指導教授 : 王玉麟

摘要


在這項研究中,我們開發了一種非侵入性的快速藥物篩選平台,可通過使用延伸閘極電雙層場效電晶體感測器來檢測細胞靜止膜電位的變化。 阻抗測量表明了虛部阻抗主導測試溶液中的閘極偏壓變化,證實了延伸閘極電雙層場效電晶體感測器的機制是透過電雙層結構的再分佈產生閘極偏壓變化並透過FET放大訊號。為了證實延伸閘極電雙層場效電晶體感測器在藥物篩選上的應用,我們加入了硝苯地平以及胞外鈣離子等胞外刺激,研究表明,我們的感測器具有在不同胞外刺激下區分極化靜止膜電位和去極化靜止膜電位的能力。維生素A酸等油性小分子由胞外擴散至胞內也可以通過感測器檢測到。此外,除化學刺激外,本研究還研究了人類角質細胞(HaCa T)細胞在物理傷害下(UVA)的實時電響應。基於這些結果,延伸閘極電雙層場效電晶體感測器已成功運用於諸如藥物篩選和離子通道研究等預期應用。

並列摘要


In this study, a non-invasive platform was developed to detect the change of resting membrane potential of cells by using extended gate electric-double-layer (EDL) field-effect transistors. Resting membrane potential change is measured as drain current change resulted from the voltage drop within test solution generated by electric-double-layer structure re-distribution. Impedance measurement indicates that the imaginary part dominates the main voltage changes in the test solution. The sensor chip can be regarded as an equivalent capacitive model and conjugates with the signal amplification by field-effect transistors. This research demonstrates that our sensors have the ability to distinguish between polarized resting membrane potential and depolarized resting membrane potential under different extracellular stimuli. The diffusion of molecules such as retinoic acid into cell membranes can be detected by EDL FET sensors as well. Moreover, besides chemical stimuli, this research also investigated real-time electrical responses from physically damaged human keratinocyte (HaCaT) cells. Based on these results, EDL FET sensors can be successfully applied in prospective applications such as drug screening and ion channel studies.

參考文獻


1. Ashcroft FM. 1999. Ion channels and disease. Academic press.
2. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R. 2005. Cell-based biosensors and its application in biomedicine. Sens Actuator B-Chem. 108(1-2):576-584.
3. Kiilerich-Pedersen K, Rozlosnik NJD. 2012. Cell-based biosensors: Electrical sensing in microfluidic devices. 2(4):83-96.
4. Wickenden A, Priest B, Erdemli G. 2012. Ion channel drug discovery: Challenges and future directions. Future medicinal chemistry. 4(5):661-679.
5. Clare JJ. 2010. Targeting ion channels for drug discovery. Discovery medicine. 9(46):253-260.

延伸閱讀