透過您的圖書館登入
IP:3.17.74.153
  • 學位論文

銻化銦薄膜應力誘發相變化及其電性研究

Study on Stress-Induce Phase Transition of Indium Antimony Thin Film and Their Electrical Properties

指導教授 : 吳志明

摘要


本實驗利用蒸鍍法合成出銻化銦薄膜材料,利用SEM 與XRD 的分析結果,其晶粒大小為20nm,利用拉曼光譜儀臨場觀察應變誘發銻化銦薄膜相變化,在拉或壓應變達到3.5%時,由閃鋅礦結構TO 模式部份轉換為纖鋅礦的E2 模式,此為一個不可逆的相變化過程。利用FTIR 光譜儀分析結果到,其能隙的變化,在壓應變達4%時,從0.17 eV 減少至0.15eV;拉應變至4%則增加至0.3eV。從高解析穿透式電子顯微鏡影像觀察到,受到外加應變的影響下,產生纖鋅礦與閃鋅礦混合結構的相存在,證實應力誘發相轉變的結果。使用聚氧化乙烯高分子離子膠體薄膜,製作成場效電晶體元件,量測其薄膜高電子遷移率12000cm2

並列摘要


In this experiment, InSb thin film with 20nm grain size was deposited by thermal evaporation. InSb phase transition form zincblende to wurtzite by applying tensile or compress strain on 3.5% was observed by In-Situ Raman spectrum. The zincblende Insb TO vibration mode will partially change to wurtzite InSb E2 mode. It is anirreversible phase transition process. The polyethylene oxide (PEO) was dropped to be InSb thin film gate dielectric material, and I-V curve was measured with different gate bias. According to experiment result, the electron mobility of n-type InSb thin film is 12000 cm2V−1s−1. Tensile/compress strain also was applied to InSb thin film, in order to enhance the electron mobility by change the band structure with different strain.

並列關鍵字

InSb phase transition raman spectra

參考文獻


1. del Alamo, J.A., Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011. 479(7373): p. 317-323.
2. Chau, R., Doyle, B., Datta, S., Kavalieros, J., and Zhang, K., Integrated nanoelectronics for the future. Nat Mater, 2007. 6(11): p. 810-812.
3. Thelander, C., Caroff, P., Plissard, S., and Dick, K.A., Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy. Applied Physics Letters, 2012. 100(23): p. 232105.
4. Nilsson, H.A., Samuelsson, P., Caroff, P., and Xu, H.Q., Supercurrent and Multiple Andreev Reflections in an InSb Nanowire Josephson Junction. Nano Letters, 2012. 12(1): p. 228-233.
5. Zhao, Y., Candebat, D., Delker, C., Zi, Y., Janes, D., Appenzeller, J., and Yang, C., Understanding the Impact of Schottky Barriers on the Performance of Narrow Bandgap Nanowire Field Effect Transistors. Nano Letters, 2012. 12(10): p. 5331-5336.

延伸閱讀