透過您的圖書館登入
IP:3.14.10.220
  • 學位論文

矽烷表面改質於IC載板上無電鍍銅層之研究

Electroless Copper Deposition on Silane Modified IC Substrate

指導教授 : 衛子健

摘要


由於高階IC載板在未來的發展趨勢朝向表面低粗糙度邁進,以至於在後續金屬化的製程中容易產生金屬層剝落的問題,因此本論文為改善新式IC載板(Ajinomoto Build-up Film, ABF GX-T37)上無電鍍銅層附著力的研究。研究中利用末端具有三個胺基官能團的矽烷化合物(3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane, ETAS)對ABF基板表面進行改質,藉由矽烷化合物的水解端與表面氫氧化後的ABF基板表面進行脫水反應,使矽烷化合物以共價鍵的形式與基板結合。經矽烷改質後的基板搭配本實驗室所開發出來的聚乙烯醇包覆奈米鈀粒子(Polyvinyl alcohol capped palladium, PVA-Pd)作為無電鍍銅沉積之觸媒,藉由矽烷化合物結構上的胺基官能團與PVA-Pd觸媒進行交互作用,增強後續無電鍍銅層與ABF基板間的附著力。 實驗的首部分是在於矽烷表面改質之結果分析,比較有無矽烷改質之ABF GX-T37基板表面的差異性。利用水滴接觸角量測及原子力顯微鏡(AFM)觀察矽烷化合物於基板表面的效果與變化,再以X射線光電子能譜儀(XPS)瞭解矽烷化合物在ABF GX-T37基板上的鍵結方式。在矽烷表面改質確立後,接著探討不同改質條件對無電鍍銅層附著力之影響,並利用工業上常使用的T-Peel測試機台進行銅層附著力測試,與目前商業上所使用的Sn/Pd膠體觸媒及Pd-ion觸媒製程相比較。然而在重複附著力測試實驗時,發現不同批次進行除膠渣(Desmear)處理的基板附著力差異甚大,因此後續將對此部分再做更深入的探討。 第二部分則是研究除膠渣程序對於不同型號之ABF基板表面所產生之影響,藉由掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDS)與AFM對基板表面進行材料分析,以及銅層與基板之裂面分析,從中尋找出影響無電鍍銅層與基板間附著力之關鍵因素,並試圖將矽烷表面改質搭配奈米鈀(ETAS+PVA-Pd)的技術套用在目前已商業化的ABF GX-13上。

並列摘要


Traditional electroless copper deposition technology cannot satisfy the requirement of fine linewidth and minimal signal loss, which are the features of advanced circuitry. To meet the feature of fine linewidth and minimal signal loss of advanced circuit, modern substrates are made flat and does not allow massively roughened. In this study, we aim to modify the surface of Ajinomoto Build-up Film (ABF) by the formation of the covalent bond between silane, 3-2-(2-amionethylamino) ethylamino propyl trimethoxysilane (ETAS) and substrate. After ETAS modification, home-made polyvinyl alcohol capped palladium(PVA-Pd) nanoparticles were adsorbed onto ETAS-modified ABF film to catalyze electroless copper plating. To enhance the adhesion by interaction of ETAS with PVA-Pd. In the first part of this study, we analyze the effect of ETAS modification on ABF GX-T37 by water contact angle, atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, the adhesion of electroless copper layers prepared using commercial catalyst (Sn/Pd and Pd-ion) were compared. Finally, the relationship between ETAS modification and the adhesion has been connected. Although repeating the adhesion tests, the result show low reproducibility between the ABF GX-T37substrates fabricated by different lots. Therefore, the following analysis of morphology of substrate was carried out to clarify the effect of desmear process on adhesion. In the second part of this study, we focused on the morphological features of different types of ABF substrate after desmear process using scanning electron microscope (SEM) and Energy-Dispersive Spectroscopy (EDS) and AFM. Moreover, we scrutinized the profile at copper/substrate interface. Finally, we found out the major factor on influencing adhesion between electroless copper layer and ABF substrate. Furthermore, we are looking forward to apply this technic into the commercialized ABF GX-13 substrate.

參考文獻


45.丁仁奎, 硫醇基丙基三甲氧基矽烷應用於封裝植入式電子功能器之玻璃與白金電極孔隙之探討. 中原大學醫學工程研究所學位論文, 2009: p. 1-92.
3.LaDou, J., Printed circuit board industry. International journal of hygiene and environmental health, 2006. 209(3): p. 211-219.
6.Wheeler, H.A., Formulas for the Skin Effect. Proc. IRE, 1942. 30: p. 412-426.
7.Schneider, M., Dielectric loss in integrated microwave circuits. Bell Labs Technical Journal, 1969. 48(7): p. 2325-2332.
8.Welch, J.D., Losses in Microstrip Transmission System for Integrated Microwave Circuits. NEREM RECORD, 1966: p. 100-101.

延伸閱讀