透過您的圖書館登入
IP:18.116.62.239
  • 學位論文

結合電沉積二氧化鈦緻密層與板鈦礦支架層製備高效率塑膠鈣鈦礦太陽能電池

High Efficiency Plastic Perovskite Solar Cell Using Low Temperature Processable Electrodeposited TiO2 Compact Layer and Brookite Scaffold

指導教授 : 衛子健

摘要


鈣鈦礦太陽能電池的效率在近十年來快速的成長至22.1 %,使得商業化的可能性大幅提升,但傳統形式的鈣鈦礦太陽能電池結構中,緻密層與多孔支架層二氧化鈦薄膜需高溫燒結製程,不僅不利於大面積連續生產,更消耗大量的能源。因此發展低溫製程的鈣鈦礦太陽能電池便成為實用化與否的一大重要技術挑戰。低溫製程的鈣鈦礦太陽能電池仍然可以硬式玻璃基板與塑膠高分子基板上施作,然一般認為塑膠高分子基板擁有輕量與可彎曲的特性,應用範圍較玻璃基板廣泛,因此此篇研究著重於發展低溫塑膠基板的鈣鈦礦太陽能電池。 低溫鈣鈦礦太陽能電池的挑戰在於傳統緻密層與多孔支架層的二氧化鈦需高溫燒結,因此,此篇研究在緻密層的部分,為使不耐酸鹼性的塑膠高分子基板不被電沉積溶液腐蝕,添加螯合劑(EDTA)至電沉積溶液中,增加三氯化鈦在溶液中的溶解度,達到增加電沉積溶液pH值的目的,再進行電沉積反應沉積緻密層,並經由循環伏安法的結果發現沉積的薄膜具有良好的覆蓋率。而多孔支架層為不含黏著劑(Binder-free)的特殊多孔漿料,此漿料可在70 oC即形成板鈦礦二氧化鈦結晶,其結晶經由XRD確認,從TEM得知其幾何形狀為扁平狀且直徑相較於原先所使用的銳鈦礦二氧化鈦較小(約25奈米),大約16-18奈米,除此之外,結合UV與UPS的結果發現,此漿料導帶位置也較銳鈦礦低,表示未經高溫燒結的多孔漿料可藉由顆粒較小且扁平狀增加與鄰近顆粒的接觸面積,以彌補未經燒結所增加的電子傳遞電阻與導帶位置低增加電子的注入能力。結合以上的電沉積緻密層與特殊多孔漿料,可製備出目前塑膠高分子基板的多孔結構最高效率,效率高達15.76 %。

關鍵字

鈣鈦礦 塑膠基板 低溫 電沉積 板鈦礦

並列摘要


In recent years, fabricating plastic perovskite solar cells (PSCs) becomes increasingly attractive because of their light-weight and bendability. However, commercial plastic substrate like Indium Tin Oxide-polyethylene naphthalate (ITO-PEN) substrate cannot endure in high temperature and acidic condition, which are safe while making PSC on glass substrate. Previously, our group developed an electrodeposition technology to replace commonly-used spin coating to deposit more compact and thinner hole blocking TiOx layer at ambient temperature. In this research, modified electrodeposition is developed to deposit TiOx blocking layer (ED-BL) on ITO-PEN. As to scaffold layer, commercial brookite slurry are used to substitute conventional anatase slurry, because brookite slurry does not require high temperature post-treatment to remove binder so that entire process to be available below 150 oC. However, ITO-PEN is easily corroded in acidic solution bath with pH value below 3. Here, we adjusted the pH value to 4.8 and applied EDTA to solution bath to prevent particle aggregation and make the solution be suitable for ITO-PEN substrate. For brookite slurry, the XRD pattern evidenced that brookite crystal can be formed after annealing at 70 °C. Sheet-like structure of brookite particles with particle size between 16-18 nm was investigated by TEM, which was believed to provide more contact area with near particles, benefiting electron transfer. After process optimization, the flexible device fabricated in low temperature showed a champion photovoltaic efficiency of 15.76%.

並列關鍵字

Perovskite Plastic Electrodeposition Brookite

參考文獻


1 K. E. Trenberth, J. T. Fasullo, J. Kiehl, Earth's Global Energy Budget. Bulletin of the American Meteorological Society 90, 311-323 (2009).
2 D. M. Chapin, C. Fuller, G. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25, 676-677 (1954).
5 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050-6051 (2009).
6 J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 3, 4088-4093 (2011).
7 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643-647 (2012).

延伸閱讀