透過您的圖書館登入
IP:18.222.0.213
  • 學位論文

氮化銦鎵奈米盤厚度對量子侷限史塔克效應研究

The Absence and Presence of Quantum Confined Stark Effects in Single InGaN Nanodisks with Different Disk Thicknesses

指導教授 : 果尚志

摘要


Ⅲ族氮化物半導體異質結構已經被廣泛應用在藍光以及白光發光二極體上。然而,在異質結構間,不同材料的晶格常數不匹配會導致內部壓電場產生,進而導致量子侷限史塔克效應(quantum confined stark effects,QCSE)並且降低半導體發光的量子效率(quantum efficiency)。 在本篇論文中,我們實驗使用的樣品為電漿輔助分子束磊晶法(PA-MBE)成長的氮化銦鎵奈米柱異質結構。我們利用光致激發光譜量測(photoluminescence,PL)分析氮化銦鎵在不同激發光強度下發光光譜的變化,我們發現較薄的氮化銦鎵奈米盤(nanodisk)在增加激發光強度時,發光波段會有明顯的藍移現象。另外,我們也利用時間解析光激螢光光譜(TRPL)來分析,可以發現較薄的氮化銦鎵奈米盤在不同的激發光強度下,輻射復合時間(radiative recombination lifetime)也有顯著的差異。前面的分析結果都說明了薄的奈米盤有明顯的量子侷限史塔克效應產生,而我們也使用穿透式電子顯微鏡(TEM)來證實這個推論。

並列摘要


Ⅲ-nitride semiconductor heterostructures have been widely applied for blue and white light LEDs. However, the internal piezoelectric field can produce large quantum confined stark effects (QCSE), and reduce the light emission quantum efficiency. Here, we use InxGa1-xN (InGaN) nanorod heterostructures grown by plasma-assisted molecular-beam epitaxy (PA-MBE) for experimental investigation of QCSE. We have measured the micro photoluminescence (PL) spectra for the shift of PL peak energy versus optical pumping power intensity and time-resolved PL spectra for exciton measurements using InGaN nanodisk samples with different nanodisk thicknesses. We found that the thickness of InGaN nanodisk plays a significant role in the observation of QCSE.

參考文獻


[22] 吳貞瑩。金氧半導體結構之表面電漿及光學特性研究。國立清華大學(2011)
[1] Bloom, S et al., Phys. Stat. Solidi 66 (1974), 161-168.
[2] Katsumi Kishino et al., Jpn. J. Appl. Phys. 43 L1524 (2004)
[3] Hon-Way Lin et al., Appl. Phys. Lett. 97, 073101 (2010)
[4] Yu-Jung Lu et al., Appl. Phys. Lett. 98, 233101 (2011);

延伸閱讀