透過您的圖書館登入
IP:18.119.139.104
  • 學位論文

金氧半導體結構之表面電漿及光學特性研究

Research on the plasmonic and photoluminescent properties of metal-oxide-semiconductor structures

指導教授 : 果尚志

摘要


氮化銦鎵在光電元件方面為具有相當應用潛力的材料。為了正確的設計三族氮化物元件,適當的了解其光學特性是相當重要的。然而,三族氮化物的天然晶格結構是烏采結構(wurtzite structure)。烏采結構會在三族氮化物的表面與介面產生強烈的巨觀極化場,這對於氮化銦鎵的發光效率有很大的影響。另一方面,將氮化銦鎵與奈米粒子結合成元件,對於其光學特性將有一些突破性的改變,這也是近年來熱門的研究課題。 本文對於氮化銦鎵及其混成奈米粒子之光學特性做了一系列的研究。在第一章,我們會簡單的介紹研究三族氮化物光學特性的背景。第二章會對於本文研究所使用的技術如電漿輔助式分子束磊晶系統 光致激發螢光光譜 化學合成金奈米粒子等等技術做介紹。第三章會對於成長不同發光波段的低維度氮化銦鎵奈米柱做一系列的光學特性研究,其中包含全波段氮化銦鎵奈米柱對於改善量子侷限史塔克效應(Quantum Confined Stark Effect,QCSE)有一系列的研究。在第四章中提到了結合氮化銦鎵薄膜與金奈米粒子形成混成材料,我們發現其發光效率將藉由金奈米粒子中的表面電漿子與氮化銦鎵中的自由載子耦合後會有明顯的增強,這對於氮化銦鎵在光電元件方面所遇到的問題將可有所改善。第五章結合氮化銦鎵奈米柱及金奈米粒子做成金屬氧化物半導體結構 (metal-oxide-semiconductor),可打破傳統光學繞射極限的三維奈米雷射。我們團隊發展了奈米尺度的綠光雷射,這對於光學元件來說是一大突破。在第六章我們對於金奈米粒子在近場光學的研究下了解表面電漿子如何在金奈米粒子共振腔中傳播的行為。第七章對本論文的內容做總結與討論及探討三族氮化物光學元件未來還需克服的課題。希望對於未來光電與電子元件的應用有所助益。

並列摘要


InGaN alloy systems are promising materials for device applications in optoelectronics. For an accurate design of III-nitride devices, a proper knowledge of their optical properties is important. However, the natural crystalline form of group-III nitrides, the wurtzite structure, induces strong macroscopic polarization fields at the interface, which affects the emission efficiencies. Conversely, using InGaN alloy systems coupled with colloidal nanocrystals to form hybrid materials can allow a significant breakthrough in optical emission and efficiency. This has become one of the most important research fields for improving the efficiency of InGaN light-emitting diodes (LEDs) in recent years. We conducted a systematic study of the optical properties of InGaN nanorods and InGaN-colloidal gold nanocrystals hybrid system. In chapter 1, we introduce the research background for group-III nitrides. In chapter 2, we describe related experimental techniques, such as plasmon-assisted molecular beam epitaxy, photoluminescence, and synthesis of colloidal gold nanocrystal technology. Chapter 3 presents a study on the growth and optical properties of InGaN nanorod arrays in a variety of emission bands. The research contained growing entire composition tenability of InGaN nanorod arrays and being minimized the carrier localization or/and the piezofield at the InGaN alloy systems. Chapter 4 shows a strong photoluminescence enhancement from the surface-plasmon-mediated hybrid system, which is formed with red-emitting InGaN and colloidal gold nanocrystals. This could be useful for improving emission efficiency in InGaN-based optoelectronic devices. Chapter 5 presents a three-dimensional nano-scale plasmonic green laser breaking through the optical diffraction limit by combining an InGaN nanorod bundle and colloidal gold nanocrystals. This is a step toward reducing the size of optical laser elements. Chapter 6 presents the scanning near-field optical microscopy (SNOM) measurement for observing the propagating behavior of a surface plasmon polarition inside colloidal gold nanocrystals. Finally, chapter 7 offers conclusions for this study and our perspectives on future research topics for the InGaN alloy system. It would be useful for future optoelectronic device applications.

參考文獻


Chapter 1
3.Mukai, T.; Morita, D.; Nakamura, S. J. Cryst. Growth 1998, 189/190, 778-781.
4.Mukai, T.; Yamada, M.; Nakamura, S. Jpn. J. Appl. Phys. 1998, 37, L1358-L1361.
5.Nakamura, S.; Mukai, T.; Senoh, M. Jpn. J. Appl. Phys. 1992, 31, 2883-2888.
6.Nakamura, S.; Mukai, T.; Senoh, M. Jpn. J. Appl. Phys. 1993, 32, L16-L19.

被引用紀錄


李肇晉(2017)。氮化銦鎵奈米盤厚度對量子侷限史塔克效應研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0401201816031928

延伸閱讀