透過您的圖書館登入
IP:18.222.240.21
  • 學位論文

應用改良式積分光彈法決定軸對稱殘餘應力

DETERMINATION OF AXISYMMETRIC RESIDUAL STRESS BY USING THE IMPROVED INTEGRATED PHOTOELASTICITY

指導教授 : 王偉中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


鏡片加工過程中所產生之殘餘應力可能使鏡片表面形貌發生變化,因此有必要於鏡片製作過程中,進行鏡片殘餘應力之量測。故本研究嘗試開發鏡片軸對稱殘餘應力量測之方法,以做為預先消除殘餘應力並再加工之依據。 積分光彈法(Integrated Photoelasticity)可應用於量測僅存在熱殘餘應力的軸對稱試片之應力分布,然而,中、大型玻璃鏡片均採用傳統加工方式進行鏡片製作,其殘餘應力狀態複雜,無法使用已知之積分光彈法進行量測。因此,本研究運用力平衡之概念開發改良式線性近似積分光彈法(Improved Linear Approximation Integrated Photoelasticity, ILAIP)以及改良式非線性演算之積分光彈法(Improved Nonlinear Algorithm Integrated Photoelasticity, INAIP)計算軸對稱物件之殘餘應力,以適用於殘餘應力狀態複雜之傳統加工鏡片。 本研究初步使用模擬方法探討ILAIP於應力計算上產生之誤差,並進而驗證理論之正確性。本研究進一步使用INAIP進行應力計算以降低ILAIP所產生之誤差,進而提升應力計算上之精度。

並列摘要


The residual stress generated from fabrication processing may cause the lens surface profile deform. Thus, measuring the residual stress of the lens during fabrication processing is needed. In this thesis, a method for measuring axisymmetric residual stress of the lens was proposed so that it is possible to optimize the fabrication parameters to reduce the residual stress of the lens in advance. Integrated photoelasticity can be used to measure the axisymmetric thermal residual stress in an axisymmetric specimen. However, the axisymmetric residual stress distribution produced by the traditional fabrication methods for the large mirrors is complicated so that the existing integrated photoelastic methods cannot be used. In this thesis, by using the stress equilibrium, improved linear approximation integrated photoelasticity (ILAIP) and improved nonlinear algorithm integrated photoelasticity (INAIP) were presented to calculate the axisymmetric residual stress in general cases. In this thesis, the calculation error of implementing ILAIP was first investigated by simulation and the applicability of ILAIP was then verified. Furthermore, the calculation error by using the ILAIP can be effectively reduced by using the INAIP.

參考文獻


[1] W. C. Lin, S. T. Chang, C. K. Chung, Y. C. Lin, S. F. Tseng and C. K. Sung, “Performance of Opto-mechanical Assembly for Reflective Mirror Subsystem of Lithographic Projection Lens,” The 6th International Conference of Asian Society for Precision Engineering and Nanotechnology, Harbin, China, pp. 15-20, 2015.
[2] W. C. Lin, S. T. Chang, C. F. Ho, C. H. Kuo, C. K. Chung, W. Y. Hsu, S. F. Tseng and C. K. Sung, “A Novel Absolute Measurement for the Low-frequency Figure Correction of Aspheric Surfaces,” Proceedings of SPIE, vol. 9524, no. 1, pp. 952417_1-952417_7, 2015.
[4] C. H. Kuo, Z. R. Yu, C. F. Ho, W. Y. Hsu and F. Z. Chen, “Freeform Mirror Polishing for Compensation on Non-symmetry System Aberrations of Remote Sensing Instrument,” Proceedings of SPIE, vol. 8841, no. 1, pp. 88410Z_1-88410Z_6, 2013.
[9] A. Y. Yi, B. Tao, F. Klocke, O. Dambon and F. Wang, “Residual Stresses in Glass after Molding and its Influence on Optical Properties,” Procedia Engineering, vol. 19, no. 1, pp. 402-406, 2011.
[11] B. Tao, P. He, L. Shen and A. Yi, “Quantitatively Measurement and Analysis of Residual Stresses in Molded Aspherical Glass Lenses,” The International Journal of Advanced Manufacturing Technology, vol. 74, no. 9, pp. 1167-1174, 2014.

延伸閱讀