透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究

A study of La0.58Sr0.4Co0.2Fe0.8O3-δ as solid oxide fuel cell cathode material

指導教授 : 黃大仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以鈣鈦礦結構材料La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF)為固態氧化物燃料電池之陰極。LSCF可摻雜GDC作成LSCF-GDC複合式陰極材料,其電池電性效能遠優於LSCF。 添加高還原性金屬白金、銀、銅至LSCF與LSCF-GDC陰極材料中,皆可提升電池之最大能量密度(maximum power density),各金屬之優劣順序為「Cu>Ag>Pt」,並且可解釋為活性金屬對於氧氣親和力之大小,氧氣親和力越高則越容易與氧氣反應(抓取氧),故氧氣親和力為「Cu>Ag>Pt」。 利用LSCF-GDC-V2O5與LSCF-GDC-Cu之陰極材料,通入2~6% NO為進體進料,maximum power density會隨著NO濃度的提高而增加,足以顯示能夠直接利用電化學反應進行還原處理NO,並利用NO來發電。 LSCF-GDC-Cu陰極材料可直接還原溫室氣體CO2進而產生CO,研究發現CO的生成速率與CO2之消耗速率一致,且通入氧氣並無發現積碳之形成。並於不同反應溫度計算出其活化能為2.72 kcal/mol.

並列摘要


This Study used perovskite La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF) as cathode material for the solid oxide fuel cells (SOFCs). The mixing of gadolinia-doped ceria (GDC) with LSCF to form the LSCF-GDC composite and it can perform better than pure LSCF as the SOFC cathode. The effects of adding Cu, Ag and Pt to LSCF and the LSCF-GDC composite all increases the maximum power density over that of pure L58SCF cathode. The cathode reduction activity has been shown to follow a trend Cu >Ag > Pt. This can be explained by the oxygen affinities of the metals, which have a trend Cu >Ag > Pt. With 2~6% NO over the LSCF-GDC-V2O5, LSCF-GDC-Cu cathodes, the maximum power density increase with increasing NO concentration. That means direct electrochemical NO reduction can occur over those cathodes when oxygen is not present. Using LSCF-GDC-Cu cathode to reduce CO2, we found that the CO formation rate, the CO2 conversion and the generated current density increase with increasing CO2 concentration. The CO2 conversion rate equals exactly the CO formation rate and no carbon deposition occurs. The activation energy is about 2.72 kcal/mol.

參考文獻


[74]黃盟欽,「直接甲烷固態氧化物燃料電池之特性研究」,國立清華大學化學工程研究所,博士論文 (2008)
[1] E.P. Murray, M.J. Sever, S.A. Barnett, “Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes”, Solid State Ionics 148, p.27– 34 (2002)
[2] W. Gong, S. Gopalan, U.B. Pal, “Performance of intermediate temperature (600–800℃) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte”, Journal of Power Sources 160, p.305– 315 (2006)
[3] W. Jin, S. Li, P. Huang, N. Xu, J. Shi, “Fabrication of La0.2Sr0.8Co0.8Fe0.2O3- mesoporous membranes on porous supports from polymeric precursors”, Journal of Membrane Science 170, p.9–17 (2000)
[4] S. Zha, J. Cheng, Q. Fu, G. Meng, “Ceramic fuel cells based on ceria-carbonate salt composite electrolyte”, Materials Chemistry and Physics 77, p.594–597 (2002)

被引用紀錄


施奇(2014)。以(LaSr)MO3(M=Co, Mn)為電化學雙電池 之陰極材料行二氧化硫及氮氧化物分解 之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2014.00230
張瑋賢(2013)。以La0.58Sr0.4 CoO3為電觸媒之陰極材料在氮氣環境中行氮氧化物分解之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2013.00171
蕭一川(2010)。以La0.8Sr0.2MnO3-δ為固態氧化物燃料電池陰極材料行氮氧化物還原之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1901201111395050
林育賢(2011)。以固態氧化物燃料電池去除氮氧化物之電化學提升研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1908201112574747
王俊修(2011)。固態氧化物燃料電池之燃料重組與二氧化碳及氮氧化物還原之研究〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1908201112574742

延伸閱讀