本研究以鈣鈦礦結構材料La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF)為固態氧化物燃料電池之陰極。LSCF可摻雜GDC作成LSCF-GDC複合式陰極材料,其電池電性效能遠優於LSCF。 添加高還原性金屬白金、銀、銅至LSCF與LSCF-GDC陰極材料中,皆可提升電池之最大能量密度(maximum power density),各金屬之優劣順序為「Cu>Ag>Pt」,並且可解釋為活性金屬對於氧氣親和力之大小,氧氣親和力越高則越容易與氧氣反應(抓取氧),故氧氣親和力為「Cu>Ag>Pt」。 利用LSCF-GDC-V2O5與LSCF-GDC-Cu之陰極材料,通入2~6% NO為進體進料,maximum power density會隨著NO濃度的提高而增加,足以顯示能夠直接利用電化學反應進行還原處理NO,並利用NO來發電。 LSCF-GDC-Cu陰極材料可直接還原溫室氣體CO2進而產生CO,研究發現CO的生成速率與CO2之消耗速率一致,且通入氧氣並無發現積碳之形成。並於不同反應溫度計算出其活化能為2.72 kcal/mol.
This Study used perovskite La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF) as cathode material for the solid oxide fuel cells (SOFCs). The mixing of gadolinia-doped ceria (GDC) with LSCF to form the LSCF-GDC composite and it can perform better than pure LSCF as the SOFC cathode. The effects of adding Cu, Ag and Pt to LSCF and the LSCF-GDC composite all increases the maximum power density over that of pure L58SCF cathode. The cathode reduction activity has been shown to follow a trend Cu >Ag > Pt. This can be explained by the oxygen affinities of the metals, which have a trend Cu >Ag > Pt. With 2~6% NO over the LSCF-GDC-V2O5, LSCF-GDC-Cu cathodes, the maximum power density increase with increasing NO concentration. That means direct electrochemical NO reduction can occur over those cathodes when oxygen is not present. Using LSCF-GDC-Cu cathode to reduce CO2, we found that the CO formation rate, the CO2 conversion and the generated current density increase with increasing CO2 concentration. The CO2 conversion rate equals exactly the CO formation rate and no carbon deposition occurs. The activation energy is about 2.72 kcal/mol.