透過您的圖書館登入
IP:3.134.81.206
  • 學位論文

二氧化矽與五氧化二鉭相關之ㄧ維奈米結構製備與量測

Synthesis and Characterization of SiO2, SiO2/Ta2O5 Core-Shell, and Ta2O5 Nanowires

指導教授 : 周立人
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本研究的第一部分中,利用熱碳還原法還原氧化鐵粉末的方法可以製造非晶質的二氧化矽奈米線,此反應在1100℃用碳加氧化鐵粉末當作原料,通入氬氣的環境下進行。本次研究發現,原料粉末的比例和氬氣的流量對於二氧化矽奈米線的直徑、形狀扭曲度、密度會有顯著的影響。而在適當的原料粉末比例和氬氣流量下,可以得到高密度、高深寬比的二氧化矽奈米線。這些二氧化矽奈米線是藉由一氧化矽氣體和氧氣反應所形成,而一氧化矽氣體是由二氧化碳氣體和矽基板反應而來、氧氣是氧化鐵粉末在高溫下所釋放出來的,此外二氧化矽奈米線的成長遵守VS成長機制。在CL量測中,實驗發現二氧化矽奈米線會強烈釋放出波長450奈米的電磁波,而此現象是由於存在二氧化矽奈米線中的中性氧缺陷所造成的。 而本研究的第二部分,在950℃的反應溫度下,藉由把二氧化矽奈米線在鉭的氣氛下退火32小時,可以得到多晶質的五氧化二鉭奈米線。為了了解此反應的過程,數個不同退火時間的結果將在本實驗中被探討。五氧化二鉭是由於金屬鉭還原二氧化矽所產生的,而在成長五氧化二鉭奈米線的初期,五氧化二鉭的小晶粒在二氧化矽奈米線的邊緣成核及成長,隨著晶粒成長導致晶粒間互相連結而在二氧化矽奈米線的邊緣層形成一層五氧化二鉭的外殼層,此時二氧化矽奈米線轉變成二氧化矽與五氧化二鉭的同軸奈米線結構。隨著退火時間的增加,五氧化二鉭外殼層厚度隨之增加,而二氧化矽核心層厚度則隨之減少至消失,於此時二氧化矽奈米線已完全轉變為五氧化二鉭奈米線。形成五氧化二鉭奈米線的過程是由外殼層內原子的擴散機制所控制,而鉭原子在外殼層中的擴散速度則是整個反應的速度控制步驟。而藉由將二氧化矽與五氧化二鉭的同軸奈米線在氫氟酸溶液中進行蝕刻反應,可以得到五氧化二鉭的奈米管。此外,在本次研究中也發現,真空退火可以改善多晶質五氧化二鉭奈米線的結晶性,且效果比快速熱退火過程來的要好。最後,五氧化二鉭的場發射性質以及由氧缺陷產生的CL性質,也在本次研究中被量測與探討。

並列摘要


In the first part of experiment, amorphous SiO2 nanowires could be synthesized via carbothermal reduction at 1100 ℃ with Ar flow gas and Fe2O3/C mixed powders, and the ratio of source powders and the flux of Ar flow gas would significant influence the diameter, twisty shape, and density of SiO2 nanowires. Several ratio of Fe2O3/C mixed powders and different Ar flow rate were considered in this study, and it is observed that ultra-high density SiO2 nanowires with high aspect ratio are formed with a suitable ratio of source powders and Ar flux. The growth of SiO2 nanowires is originated by the reaction between SiO and O2 vapor and following the VS growth mechanism, while SiO vapor is formed by CO2 reacting with Si substrate as well as O2 vapor comes from the source powders. Furthermore, lots of neutral oxygen vacancy causes the SiO2 nanowires revealing the strong emitting peak of 450 nm in the cathodoluminescence analysis. In the second part of experiment, poly-crystal Ta2O5 nanowires can be synthesized via annealing SiO2 nanowires at 950℃ in a reductive Ta vapor ambient for 32 hours. To realize the formation process of Ta2O5 nanowires, the influence of different annealing was considered in this study. The Ta2O5 phase is formed by Ta reducing SiO2, and the formation of Ta2O5 nanowires starts with nucleation and grain growth of Ta2O5 crystal forming SiO2/Ta2O5 core-shell structure, and then continuous growth of shell layer. The growth process is dominated by diffusion through the ash layer control, and the diffusion of Ta atoms through shell layer would be the rate-controlling step of the diffusion controlled growth mechanism. In addition, Ta2O5 nanotubes could be synthesized by etching SiO2/Ta2O5 core-shell nanowires with dilute HF solution. It is also observed that the crystalline of Ta2O5 nanowires by vacuum annealing process rather than RTA process. Furthermore, the field-emission character and the cathodoluminescence (CL) property, resulting form the neutral oxygen vacancy, are considered in this study.

延伸閱讀