透過您的圖書館登入
IP:3.142.35.75
  • 學位論文

以(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ為SOFC陰極材料之研究

Study of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ as SOFC Cathode Material

指導教授 : 黃大仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以鈣鈦礦結構導氣離子材料(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ (BSSCF),搭配具有導氧離子性質的材料氧化釓參雜氧化鈰 (Ce0.9Gd0.1O2-x, Gadolinia doped Ceria,GDC )、對氮氧化物還原有催化助益的銅離子作為SOFC陰極材料,分別以氫氣、一氧化氮作為陰極氣體,進行電池性能、交流阻抗分析( AC Impedance ) 等電性分析,希望能藉此驗證以固態氧化物燃料電池處理一氧化氮是否可行。 實驗發現以單純BSSCF為陰極材料於不同操作溫度下進行單電池發電,以20%氧氣為陰極氣體情況下,電池之maximum power density可達4.79 mW/cm2 (800℃)、6.09 mW/cm2 (850℃)、8.65 mW/cm2 (900℃)、11.33 mW/cm2 (950℃)。若將BSSCF與不同比例GDC混合,發現GDC添加量越多電池效能越佳,於800℃下操作,使用20%氧氣為陰極氣體時,BSSCF添加50wt%GDC為陰極材料之電池maximum power density 可達8.65 mW/cm2;以BSSCF 添加70wt%GDC為陰極材料則可達16.28 mW/cm2。若改用6%一氧化氮為陰極氣體,於800℃下操作時,BSSCF混合GDC為陰極材料效果相當差,BSSCF添加50wt%GDC maximum power density 僅有0.031mW/cm2;BSSCF 添加70wt%GDC僅有0.1017mW/cm2。若於BSSCF結構中添加銅離子構成BSSCCF 712[(Ba0.5Sr0.5)0.9Sm0.1Co0.7Cu0.1Fe0.2O3-δ] (銅離子取代鈷離子)、BSSCCF 811 [(Ba0.5Sr0.5)0.9Sm0.1Co0.8Cu0.1Fe0.1O3-δ] (銅離子取代鐵離子),則電池效能可以提升至0.8 mW/cm2 (BSSCCF 712)、1.66 mW/cm2(BSSCCF 811),顯示銅離子對於一氧化氮還原催化活性之提升有所助益。

並列摘要


This Study used (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ (BSSCF) as major cathode material, combined with Gadolinia doped Ceria and copper ion for SOFC. For different cathode material, we provide 20% O2 and 6% NO from cathode side to conduct single cell SOFC test and try to show that NO can be used at cathode side of SOFC. Experiment shows that SOFC single cell with only BSSCF cathode under different temperature, applying 20% O2 from cathode side could provide maximum power density 4.79 mW/cm2 (800℃)、6.09 mW/cm2 (850℃)、8.65 mW/cm2 (900℃)、11.33 mW/cm2 (950℃). Combined BSSCF with different wt% of Gadolinia Doped Ceria (GDC) can found that the more wt% GDC added, the better SOFC single performance provided. BSSCF with 50wt%GDC as cathode could provide maximum power density 8.65 mW/cm2, while BSSCF with 70wt%GDC could reach 16.28 mW/cm2, under 800℃ with 20% O2 applied from cathode side. When applying 6% NO from cathode side, BSSCF with GDC could only provide limited performance. If we added Copper into BSSCF perovskite structure to form BSSCCF 712 or BSSCCF 811, cell performance could raise remarkably. Maximum power density can reach 0.8 mW/cm2 (BSSCCF 712), and 1.66 mW/cm2(BSSCCF811), showing that copper ion is really helpful for NO redution.

參考文獻


1. W. R. Grove, “On Voltavic Series and the Combination of Gases by Platium”, Philosophical Magazine, 14 (1839) 127.
6. 余河潔, “以鍶摻雜銅酸鑭做為中溫固態氧化物燃料電池陰極材料之研究”, 國立成功大學材料科學及工程學系 博士論文, 民國94年
10. Hammou, J. Guindet, “Solid Oxide Fuel Cell”, CRC Handbook of Solid State Electrochemistry, (1997).
11. J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics, 94, (1997) 17-25.
12. J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404 (2000), 821-823.

被引用紀錄


周建良(2009)。以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1111200916033895
蕭一川(2010)。以La0.8Sr0.2MnO3-δ為固態氧化物燃料電池陰極材料行氮氧化物還原之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1901201111395050

延伸閱讀