透過您的圖書館登入
IP:3.133.79.70
  • 學位論文

探討嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 之半乳糖激酶酵素動力學及應用於合成 Pk 抗原類似物

Kinetics Studies with Galactokinase from Meiothermus taiwanensis ATCC BAA-400 and Application of Galactokinase to Synthesize Pk-antigen analoge

指導教授 : 林俊成
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,選殖、表達台灣本土嗜熱菌 Meiothermus taiwanensis ATCC BAA-400 的半乳糖激酶 (galactokinase,GalK) 並以 IMPACTTM-CN系統純化可得 16 mg/L 的半乳糖激酶重組蛋白。半乳糖激酶重組蛋白最佳化反應溫度為 75 oC、最佳化反應酸鹼值為 9.0。半乳糖激酶重組蛋白對半乳糖的kcat/Km 值為 168.47 s-1mM-1,於 55 oC 和 75 oC 分別測得的比活性為 240 U/mg 和 388 U/mg。半乳糖激酶與實驗室已有的葡萄糖-1-磷酸胸苷轉移酶 (glucose-1-phosphate thymidylyltransferase,RmlA)結合,可進行一鍋化反應製備尿苷二磷酸半乳糖 (UDP-Gal)。 分別由 Neisseria meningitides 與 Haemophilus influenzae Rd KW20 選殖兩種來源不同的 α-1,4-半乳糖轉移酶。C-端截斷 (truncated) 19 個胺基酸的N. meningitides α-1,4-半乳糖轉移酶(LgtC-19)與N-端截斷 38 個胺基酸的 H. influenzae Rd KW20 α-1,4-半乳糖轉移酶(N-cut-38-Hi0258),皆可運用於階段式一鍋化反應合成 Pk 抗原類似物 (α-D-Gal-(1-4)-β-D-Gal-(1-4)-β-D-Glc -OC6H12N3)。

並列摘要


In this study, the recombinant galactokinases (GalK) from Meiothermus taiwanensis ATCC BAA-400 was cloned, over-expressed, and purified by IMPACTTM-CN system with a yield of 16 mg/L cell cultures. The optimal reaction conditions for recombinant GalK are at 75 °C, and pH at 9.0. The kcat/Km value of recombinant GalK toward galactose is 168.47 s−1 mM−1 and specific unit at 55 °C and 75 °C are 240 U/mg and 388 U/mg, respectively. The GalK was combined with glucose-1- phosphate thymidylyltransferase (RmlA) to synthesize uridine 5’-diphosphate galactose (UDP-Gal) in one-pot reaction. In addition, the genes of α-1,4-galactosyltransferases (GalTs) from Neisseria meningitides (19 residues at C-terminal deleted; LgtC-19) and Haemophilus influenzae Rd KW2 (38 residues of N-terminal was deleted;N-cut-38-Hi0258) were cloned and the corresponding proteins were over-expressed. Both α-1,4-GalTs were respectively combined with GalK and RmlA to synthesize Pk antigen derivatives (α-D-Gal-(1-4)-β-D -Gal-(1-4)-β-D-Glc-OC6H12N3) in sequential addition one-pot reaction manner.

參考文獻


1. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
3. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258-268.
4. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299, 1694-1697.
5. Varki, A., Nothing in glycobiology makes sense, except in the light of evolution. Cell 2006, 126, 841-845.
6. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.

被引用紀錄


黃立德(2013)。建構功能化奈米粒子應用於生物分子分離偵測與複合材料的合成〔博士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2013.00020
侯凱齡(2013)。利用氟標記輔助化學及酵素合成寡醣〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2511201311330310
郭力禎(2015)。酵素唾液酸化 Globo-系列醣體〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510260018
李本元(2016)。發展位向專一蛋白質修飾及固化方法〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0901201710355416

延伸閱讀