透過您的圖書館登入
IP:3.136.18.48
  • 學位論文

利用金屬輔助化學蝕刻粗化方式製作多晶太陽能電池

Fabrication of Multicrystalline Silicon Solar Cells with Surface Texturing by Metal-Assisted Chemical Etching (MAE)

指導教授 : 黃惠良
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本篇論文中,利用金屬輔助化學性蝕刻作為多晶矽的表面粗化方式來製作太陽能池。在金屬輔助化學性蝕刻的過程中用了兩種蝕刻液,一個為HF、H2O2及H2O的混和液,另一個為HF、Fe(NO3)3及H2O的混和液。銀則被用來當作金屬輔助化學性蝕刻中的金屬。蝕刻後的表面藉由SEM以及反射率的量測來分析表面結構以及表面的反射率。利用金屬輔助化學性蝕刻的表面粗化方式,產生了許多不同的表面結構,包括碗狀、錐狀及高深寬比的柵欄狀結構。蝕刻後的表面反射率平均在10%以下,而在短波長400~600nm的範圍反射率更只有2~3%。利用HF/Fe(NO3)3/H2O的蝕刻液製作出的太陽能電池效率為8.24%,而利用HF/H2O2/H2O的蝕刻液製作出的太陽能電池效率為11.81%。

並列摘要


In this thesis, the surface texturing for multicrystalline silicon by using metal-assisted chemical etching (MAE) method was carried out to fabricate solar cell. There were two kinds of etchant used in the MAE process. One was a mixture of HF, H2O2 and H2O and the other was a mixture of HF, Fe(NO3)3 and H2O. The metal used in the MAE process was Ag. The textured surface morphologies were analyzed by SEM and reflectance measurement. The different morphologies including bowl, cone and grating with high aspect ratio were fabricated. The average reflectance of textured surface is below 10% and the lowest reflectance is about 2~3% in the range of 400~600 nm. The efficiency of solar cell fabricated with HF/Fe(NO3)3/H2O is 8.24% and fabricated with HF/H2O2/H2O is 11.81%.

參考文獻


[4]M. Planck, On the Law of Distribution of Energy in the Normal Spectrum, Annalen der Physik 4 (1901), pp. 553-563.
[5]J. E. Parrott, Choice of an equivalent black-body solar temperature, Solar Energy 51(3) (1993), pp. 195-195.
[8]Jenny Nelson, The Physics of Solar Cells (2003) 11.
[9]X. Li , P. W. Bohn , Appl. Phys. Lett. 77 (2000), 2572 .
[11]C. Chartier , S. Bastide , C. Levy-Clement , Electrochimica Acta 53 (2008), 5509.

延伸閱讀