透過您的圖書館登入
IP:18.222.121.79
  • 學位論文

多功能性奈米介孔隙材料及其奈米元件之設計與製造

The Design and Fabrication of Multifunctional Mesoporous Materials and Nano Devices

指導教授 : 曾繁根
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


開發一個具有奈米孔洞大小可操控性之奈米孔洞通透膜應用於生物檢體過濾技術或是在燃料電池中扮演質子交換膜減少燃料透過質子交換膜以及應用奈米孔洞完成之快速基因定律的操控系統是相當具有挑戰性的工作。此可控制之奈米孔洞大小不只可以藉由製造新的奈米孔隙材料來完成介孔隙物質,尚可以利用在次微米孔洞中加入不均勻電場所產生的介電泳力來控制粒子在其中的傳輸行為而形成一個虛擬奈米孔洞。藉由這些技術皆可以達到開發一個具有奈米孔洞大小可操控性之介孔洞元件或材料。 我們開發了兩種主要的方法來完成這個控制奈米孔隙大小的工作:第一個方法是利用溶劑作為奈米孔洞的鑄造材料,藉由光化學來鍊結環氧樹酯材料以及控制在鍊結過程中的溶劑含量最後再將此作為鑄造模板的溶劑相移除,就可以製作出具有可控制性奈米孔隙大小的奈米孔隙材料。除此之外此環氧樹酯為了增強其機械強度還加入了具有垂直方向性的多壁奈米碳管來製作出具有高度方向性奈米複合材料,最後測是這個奈米複合材料具有高過於孔隙環氧樹酯113%的機械強度。此外為了增強其應用,在表面處理上也引入了使用254奈米的紫外光結合臭氧環境的表面氧化技術達到表面親水化的處理。此親水化處理不只可以應用於所製作的介孔隙材料應用上,尚且可以用於一般此類環氧樹酯所製作出的封閉式微流道系統的表面親水性改質。此表面改質方式經過驗證是屬於共價鍵的價接方式形成,將可以有效的延長表面處理的時效,使表面能夠形成一個更加穩定而親水的環境。 除了這種利用環氧樹酯高分子溶劑控制的方式製作出的奈米孔隙材料,尚且開法出一個可以動態控制虛擬奈米孔隙的元件。在一個次微米的孔隙薄膜上,控制在此次微米孔道中的不均勻分布交流電場將會形成一個局部的介電泳效應,利用此介電泳效應將可以有效的控制此次微米孔道的開關大小。其可操控範圍將含跨40奈米到3奈米的尺度,這些控制皆由在奈米侷限空間中的介電泳效應所決定。此外此可控制之虛擬奈米孔道的技術將可以應用於控制去氧核醣核酸分子穿過奈米孔道進行快速基因定序的工作時的速度控制,藉由此虛擬奈米孔道將可以把去氧核醣核酸分子通過奈米孔道的速度減至0.615微米/秒,這個速度將可以讓基因定序以10千赫茲的頻率完成讀取,較傳統好上五倍的效率。 本研究開發了兩種製作方式的可控制奈米孔隙平台及材料,製作出了一個具有高機械強度以及可控制表面特性以及奈米孔隙大小的高分子材料,以及利用次微米孔道中的介電泳效應來完成控制虛擬奈米通道的大小工作。這將更容易讓可控制的介孔隙整合到微流體系統。實驗結果顯示這兩種方式都可以有效的操控介孔隙的大小尺寸,因應不同的需求應用於生物檢體大小篩檢、燃料電池中使用的防止燃料擴散用的質子傳遞膜材料以及控制基因定序速度的工作。

並列摘要


The controllable nanoporous material or device with highly functionality is very important issue for filtration application such as bio-sensor, rapid DNA sequence technology even the proton exchange membrane in fuel cell system. The controllable nanoporous can be realized by fabricating mesoporous material and controlling the pore size into a specific cut off range or by combine sub-micrometer solid state pore with dielectrophoresis force inside this nanoconfinement region and make this into a tunable virtual nanopore device. We have developed two controllable methods to realized the nanoporous structure. One is using solvent casting controlling technology when the epoxy based photoresist are crosslinked to generate a controllable mesoporous material. The cut off range for this mesoporous material is around 4 to 8nm depends on the solvent contain ratio. And in order to enhance the mechanical strength we composite this epoxy material with well aligned multi wall carbon nanotube to enhance the mechanical strength by 113%. Also develop a novel method for this epoxy based material surface modification and change this surface into hydrophilic property and enhance the mass transportation rate within mesoporous by UV/Ozone grafting technology. This UV/Ozone technology can not only apply to this mesoporous epoxy material but also to the embedded micro-channel made by this epoxy material. Another method is to create a solid state nanopore and controlling the dielectrophoresis inside this nanopore. By using this virtual nanopore device the pore size can be controlled from 40 nm down to 3nm by AC electric field used. Also this virtual nanopore can slow the DNA translocation speed through the nanopore device down to 0.615μm/s. In summary, we have developed a high mechanical and optical patternable mesoporous epoxy material with controllable nanopore size for bio-filtration and proton exchange membrane in fuel cell application. Also the electric field depended dielectrophoresis can act as a tunable virtual nanopore which is much easier to integrated with micro-fluidic chip system. Result shows that this two nanoporous material and device can be controlled the pore size easily and have many applications such as bio-filtration, proton exchange membrane, and controlling DNA translocation speed inside the nanochannel.

參考文獻


[1]“High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)” E. Peled, V. Livshits, T. Duvdevani, Journal of Power Sources, 106 (2002) 245-248
[2]“Synthesis, characterization and electrochemical transport properties of the poly (ethyleneglycol)-grafted poly (vinylidenefluoride) nanoporous membranes” Y. Liu, J.Y. Lee, E.T. Kang, P. Wang, K.L. Tan, Reactive Functional Polymer, 47 (2001) 201-213
[3]“Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters” B. Krause, N.F.A. van der Vegt, M. Wessling, Desalination, 144 (2002) 5-7
[4]“Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes” P.L. Drzal, A.F. Halasa, P. Kofinas, Polymer, 41 (2000) 4671-4677
[5] “An artificial nanopore for molecular sensing” O.A. Saleh, L.L. Sohn, NanoLetters, 3 (2003) 37-38

延伸閱讀