透過您的圖書館登入
IP:3.15.2.78
  • 學位論文

晶圓製造廠空調元件之最佳化節能策略與變頻邏輯分析

The Optimal Energy-Saving Strategy and Analysis of Variable-Frequency Control Logic for Air-Conditioning System in a Semiconductor Factory

指導教授 : 桑慧敏
本文將於2026/09/21開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


空調系統的耗電佔各產業的電力成本中相當大的比例, 以電機電子業為例, 空調系統歷年來佔總耗電25%以上。因此如何減少在空調設備上的耗電為重要議題。 空調水側系統共有四大元件: 冰機、冰水泵、冷卻水泵與冷卻水塔。而過往研究中, 同時針對完整水側系統所有元件來建立數學關係式甚至最佳化整體耗電的研究相當稀少。 本研究以完整水測系統進行研究, 提出一套新的元件控制方式, 該方式不僅有 PID 控制還同時有最佳化節能決策。PID 控制的部分為根據產學方歷史資料, 提出包含冰水泵、冷卻水泵與冷卻水塔的 PID 邏輯, 其績效指標 E(MAPE)皆在3%以下。 最佳化節能決策的部分, 為根據當前系統的元件運轉狀態來判斷是否啟用。績效表現以現存的產學方資料進行驗證, 最終使用最佳化決策模型估計可在2020年節省152425元。

並列摘要


The electricity consumption of air conditioning systems accounts for a large proportion of the electricity costs of most industries. For example, more than 25% of the electricity consumption of the electronics industry is consumed by the central air conditioning system. Therefore, reducing the power consumption of air conditioning equipment is critical from the perspective of cost reduction. There are four major components in the water-side system of the air conditioning system: chiller, chilled water pump, cooling water pump, and cooling water tower. To the best of our knowledge, few studies have established mathematical relationships or even optimized the overall power consumption for all components in the water-side system. In this study, we propose a new component control method that incorporates proportional–integral–derivative (PID) control as well as an optimal energy-saving strategy. The PID control is based on the historical data of a cooperative company. The PID logic for the chilled water pump, cooling water pump, and cooling water tower is proposed, with a performance index E(MAPE) below 3%. The optimal energy-saving strategy uses the current components’ operating status to determine the timing of activation. Performance is verified using the existing data of the cooperative company. The estimated savings using the optimal energy-saving strategy are $152,425 in 2020.

參考文獻


[1] ASHRAE. “ASHRAE Handbook-HVAC Applications”. American Society of
Heating, Refrigerating and Air-Conditioning Engineers Inc Chapter 41 (2007).
[2] Dingyi Cheng et al. “Estimation of Chiller Electric Power of Central Air
Conditioner using Feedforward Neural Network”. 2021 6th Asia Conference
on Power and Electrical Engineering (ACPEE). 2021, pp. 399–404.

延伸閱讀