透過您的圖書館登入
IP:3.144.1.156
  • 學位論文

車輛電動空調變冷媒流量控制與耗能因子研究

A Study on Refrigerant Volume Control and Energy Parameters for Electric Powered Vehicle Air-Conditioning Systems

指導教授 : 蔡尤溪
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


汽車空調約佔整車耗能15~20%,視為電動車輛主要電力負載之一,亦為電動車輛科技發展之要項。採用電動馬達輔助空調取代傳統皮帶驅動,則可在不同時速或空調負載時以節能策略改善耗能及減少電力負載。本研究以雙蒸發器型式的電動空調,探討控制參數包括電動壓縮機轉速控制、電子膨脹閥開度控制、溫度控制、系統高低壓控制、單/雙蒸發器控制等,藉由瞭解相關參數後,研究車輛空調節能策略。本研究經由實驗及理論分析後,獲得不同工況下電動壓縮機之性能曲線與最適化的操作參數,依上述所得之耗能曲線與最適化參數,以空調需量做為節能控制,建立系統性能係數法則之空調系統節能運轉策略,以作為未來電動空調發展之基礎。 經研究發現只需開啟前座空調時,開啟前座單蒸發器相對於雙蒸發器將有較高之節能效果,另外車輛行駛時如採用風扇節能控制,其整體製冷系統節能幅度約為8.8%。當車輛行駛時如採用空調需量調控壓縮機轉速,相對於傳統壓縮機ON/OFF控制將可得到較高之節能。

並列摘要


Motor vehicle air-conditioning energy consumption accounts for about 15 - 20% considered as a major power load. Also it is key element in the development electric powered automotive. By replacing the traditional belt-driven compressor to an electric motor, energy-saving strategies may be applied to alter the speed of compressor and hence reducing the power load. In this study, dual-evaporator type of electric air conditioning is used to investigate the control parameters such as the speed of electric compressor, electronic expansion valve opening, temperature, condensers and evaporators system and single or dual-evaporator control. By understanding the relevant parameters, research can be done on energy-saving strategies. This research performs experiments, and theoretical analysis in order to obtain the electric compressor performance curve and the optimal operational parameters under different operating conditions. Using the data and results achieved, characteristic of the system performance coefficient are presented aiming to meet the demand of cooling load and energy saving strategies. Through the research, it is found that when the front seat air-conditioning is activated, activating only single evaporator shows better results of energy savings compared to activating both evaporators. Also, when the fan energy-saving control is utilized while driving, overall cooling system shows 8.8% increment of energy-saving performance. Compared to traditional ON/OFF control system, higher performance of energy savings can be achieved while using demand-oriented variable speed control for compressors.

參考文獻


[12]張烔堡、黃志達、高浚富、李俊承,「台灣地區車輛最大空調負載與冷凍能力研究」,車輛工程學刊,第四期,2007,第19-36頁。
[13]余培煜、粘世和、黃致愷,「R410A分離式空調機開發技術研究」,冷凍空調&能源科技,第68期,2011,第31-40頁。
[2]O. Kaynakli and I. Horuz, “An Experimental Analysis of Automotive Air Conditioning System”, Heat Mass Transfer, vol.30, no.2, 2003, pp. 273-284.
[3]X.Q. Li, J.P. Chen, Z.J. Chen, W.H. Liu, W. Hu and X.B Liu, “A New Method for Controlling Refrigerant Flow in Automobile Air Conditioning”, Applied Thermal Engineering, vol.24 , 2004, pp. 1073-1085.
[4]S.J. Wang, J.J. Gu, T. Dickson, J. Dexter and Ian McGregor, “Vapor Quality and Performance of an Automotive Air conditioning System”, Experimental Thermal and Fluid Sciences, vol.30, 2005, pp. 59-66.

被引用紀錄


施昶安(2014)。電動車冷暖空調耗能因子與節能潛力分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00578
游凱欣(2012)。噴霧型儲冰技術之液滴過冷結晶實驗研究與分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00291
陳昱存(2013)。外環境及行駛模式對電動車空調負載影響之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1901201313425600

延伸閱讀