透過您的圖書館登入
IP:3.144.104.29
  • 學位論文

利用耗散粒子動力學模擬π形接枝共聚物在平衡與非平衡系統下之相態衍變

Morphological Transition of π-shaped Graft Copolymer in Equilibrium and Non-equilibrium System via Dissipative Particle Dynamics Simulation

指導教授 : 張榮語

摘要


本論文使用耗散粒子動力學模擬π形接枝共聚物在平衡與非平衡系統下改變接枝粒子數與分子濃度。此π形接枝共聚物是由親水性,疏水性,強疏水性的三種高分子所組成。其結果發現在平衡系統下,當濃度低時,產生球狀和圓柱狀;當濃度高時,產生層板或網狀結構,在濃度100%時產生了應用性相當廣泛的孔洞結構。當加入流場後,發現流場影響了最終形態與形態的方向。其中分子622模擬出的條狀特殊結構,我們相信這結構在奈米科技上有廣泛的應用。最後將所有形態整理成相圖,使實驗人員透過調整濃度與接枝數目能得到所需要的形態。接著探討黏度與濃度的關係,其趨勢是隨著濃度增加,黏度也跟著增加,不過有些因為受到形態及分子間作用力的影響,導致黏度大小產生非預期的變化。最後我們期許這些結果在未來能用來解決在光電、生物、醫藥或奈米科技上的問題。

並列摘要


In this thesis, we use dissipative particle dynamics simulation to discuss the morphological transition of π-shaped graft copolymer under equilibrium and non-equilibrium system, by changing the number of particles grafted and the molecular concentration. The π-shaped graft copolymer is composed of hydrophilic polymer, hydrophobic polymer, and strong hydrophobic polymer. Under the equilibrium system, it becomes spherical or cylindrical structure in low concentration, and network or lamellas in high concentration in this study. When the concentration is up to 100 percent, the porous structure, which is wide applicable, is observed in this study. Under the non-equilibrium system, we find that the final morphology and its direction are affected under the flow-field. Interestingly, the molecular 622 becomes a special striped morphology, and we believe this structure is useful in nanotechnology. At the end of the thesis, we make all the morphology into a phase diagram. It is easy for the experimental operator to get the desired morphology by changing the number of particles grafted or the molecular concentration. Later on, we discuss the relationship between the viscosity and concentration. The trend is that when the concentration increases, the viscosity increases, too. However, some viscosity is unexpected, due to the effect of the morphology or intermolecular forces. In the future, we hope these results can solve the problem in optoelectronics, biotechnology, medicine, or nanotechnology.

參考文獻


3. 陳信龍, 高分子之自組裝奈米結構. THE CHINESE CHEM. SOC., 2004. 62(4): p. 455-460.
5. Zilinskas, G.J., A. Soleimani, and E.R. Gillies, Poly(ester amide)-Poly(ethylene oxide) Graft Copolymers: Towards Micellar Drug Delivery Vehicles. International Journal of Polymer Science, 2012.
36. 劉亦瑋,2012, “利用耗散粒子動力學模擬不同分子形狀的三元性分子之平衡相態衍變” ,國立清華大學化學工程學研究所碩士論文
1. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
4. Hamman, J.H., Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, 2010. 8(4): p. 1305-1322.

被引用紀錄


黃薈臻(2017)。不同生長條件對台灣藜幼苗機能性成分之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201702000
胡宏瑀(2015)。耗散粒子動力學模擬X形剛性-柔性多親性嵌段共聚物於溶液中之相態衍變〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1908201515570224

延伸閱讀