透過您的圖書館登入
IP:18.119.192.55
  • 學位論文

以無機奈米線疊層結構做為高效能鋰離子電池電極之開發

The Development of Layered Inorganic Nanowires as High-Performance Lithium-Ion Battery Electrodes

指導教授 : 段興宇

摘要


本研究將鍺奈米線與銅奈米線搭配後,製備出無機奈米線疊層結構的鍺/銅奈米線織布。此鍺/銅奈米線織布具有可撓性與彈性,且與FEC/DEC電解液搭配製成鋰電池後,展現出優異的電池的充放電循環性能。譬如,於1 C的充放電速率下進行了1000次循環後,可逆電容量仍高達830 mA h/g。另外在快充放電的表現上,鍺/銅奈米線織布可以在承受20 C充放電速率下,仍有350 mA h/g的電容量表現。另外,在1 C的充電速率充電後,可再以高達50 C的超高速放電速率進行穩定放電。經由計算並與相關文獻比較後,我們發現在計算全部電極的總重量(活性物質+導電劑+黏著劑+集流板)下,鍺/銅奈米線織布電極比其他種類的鍺或矽的電極高出了2~7倍的重量電容量。此方法所製備出的鍺/銅奈米線織布電極具潛力可應用於大電流放電的設備,且可有效減輕電池的重量。此外,我們製備出了大面積的鍺/銅奈米線織布(5 cm * 8 cm),搭配商用化的鎳鈷錳正極製作成軟包式的全電池,可以驅動大量的LED燈,證實了我們所開發出的無機奈米線疊層結構的鍺/銅奈米線織布,除了實驗測試外,也可以做實際的鋰離子電池應用。

並列摘要


Germanium nanowires and copper nanowires were combined to manufacture germanium/copper nanowire fabrics with a layered inorganic nanowires structure. The fabrics are flexible and resilient. The lithium ion half cells made of the germanium/copper nanowire fabric with an electrolyte composed of FEC/DEC have excellent cycle performance and stability. After 500 cycles at a rate of 1C, the cell exhibited a reversible capacity of 830 mAh/g. The germanium/copper nanowire fabrics also exhibited high rate capacity, having a reversible capacity of 350 mAh/g at a rate of 20 C. In addition, it can allow ultrafast discharge at 50 C when charged at 1C. By calculating the total weight of the electrodes (active materials + conductive agents + binder + current collector) and comparing with the relevant literature, we found that the weight capacities of germanium/copper nanowire fabric electrode were 2~7 times higher than other types of germanium or silicon electrode. The germanium/copper nanowire fabric electrodes have potential for some applications which require rapid cycling rates and can significantly reduce battery weight. Furthermore, We prepared a large area Ge/Cu nanowire fabric anode (5 cm *8 cm) to assemble full cells with commercial Li(NiCoMn)O2 cathode. The full cells were able to power a lot of LEDs. This work demonstrated that our development of layered inorganic nanowires structure make progress toward practical Li-ion battery applications.

參考文獻


1. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie 2006, 45 (21), 3414-39.
2. Korgel, B. A., Semiconductor nanowires: A chemical engineering perspective. AIChE Journal 2009, 55 (4), 842-848.
4. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89.
5. Bootsma, G. A.; Gassen, H. J., A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane. Journal of Crystal Growth 1971, 10 (3), 223-234.
6. James, D. W. F.; Lewis, C., Silicon whisker growth and epitaxy by the vapour-liquid-solid mechanism. British Journal of Applied Physics 1965, 16 (8), 1089.

延伸閱讀