透過您的圖書館登入
IP:3.149.213.209
  • 學位論文

以無機鍺奈米線多層結構作為超高單位面積電容鋰離子電池電極之開發

The Development of Multi-Layered Inorganic Germanium Nanowires as Ultra High Areal-Capacity Lithium-Ion Battery Electrodes

指導教授 : 段興宇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來因行動裝置、電動車快速的發展,高能量密度鋰離子電池之開發是迫切需要的,其中表面積電容是個重要的指標,於啇業化鋰離子電池負極單位面積電容約為4 m Ah/cm2,而相關鋰離子負極材料的文獻中其值都低於4 m Ah/cm2,於此我們提供一個新穎電極結構可達到2.5倍的啇業化的負極單位面積電容。此結構是以數個鍺奈米線和銅奈米線製成的織布和黏著劑所搭配而成的層狀電極結構,許多活性材料可乘載在此單位面積上。藉由著不同的層數搭配,可以得到不同的單位面積電容,其電池表現如下所示: 2層的電極承載5.3 mg的鍺奈米線以1.2 mA/cm2充/放電,經過50次循環表現下可以達到約5 m Ah/cm2的表現,3層的電極承載8.5mg的鍺奈米線以1.0 mA/cm2充/放電,經過20次循環表現下可以達到10 m Ah/cm2的表現。同時我們和啇業化的鋰鎳鈷錳氧正極材料搭配成功地製作出高單位面積電容的全電池,以1.08 mA/cm2的電流充放電,經過50次循環表現下可達到6 m Ah/cm2的表現。以此結構所組成的全電池可提供較大的單位面積電容量於LED燈和風扇上的應用。

並列摘要


Recently, because of the emerging market for portable device and electric vehicles, the development of high energy lithium ion batteries was urgent required. In high energy lithium ion batteries development, the areal capacity is an important indicator. The areal capacity of commercial negative electrode is around 4 m Ah/cm2, that most of the negative material literature were still lower than it. Here we report the novel structure of electrode by using germanium nanowires as lithium-ion battery anode to achieve 2.5 times commercial areal-capacity. Germanium nanowires and copper nanowires were combined to manufacture germanium/copper nanowires fabrics with a layer-by-layer structure. The electrodes fabricated by using several nanowires fabrics and c-PAA-CMC to form a multi-layered structure which contain lot of active material on its unit area. By different layers of the multi-layered structure electrode, the high areal capacity are showing as followed. The 2 layers structure loading 5.3 mg Ge NWs exhibited the reversible areal capacity of ~5 m Ah/cm2 at the charge/discharge current 1.2 mA/cm2 after 50 cycles, and the 3 layers structure loading 8.5 mg Ge NWs performed the reversible areal capacity of ~10 m Ah/cm2 at the charge/discharge current 1.0 mA/cm2 after 20 cycles. Moreover, we successfully assemble the full battery by using a LiNiCoMnO2 cathode, which the areal capacity can achieve to ~6 m Ah/cm2 at the charge/discharge current 1.08 mA/cm2 after 50 cycle and the full battery can provide large capacity for uses on light-emitting-diodes (LEDs) and electric fan.

參考文獻


1. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Advanced Materials 2011, 23, (15), 1695-1715.
2. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4, (8), 2682-2699.
3. Larcher, D.; Beattie, S.; Morcrette, M.; Edstroem, K.; Jumas, J. C.; Tarascon, J. M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007, 17, (36), 3759-3772.
4. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451, (7179), 652-657.
6. Goodenough, J. B.; Park, K. S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135, (4), 1167-1176.

延伸閱讀