透過您的圖書館登入
IP:3.22.51.241
  • 學位論文

濕式製程有機及有機/無機混成太陽能電池

Solution-Processed Organic and Organic-Inorganic Hybrid Solar Cells

指導教授 : 林皓武
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文研究濕式製程有機小分子太陽能電池與有機/無機混成太陽能電池元件結構與特性。 第一章節中,簡介近代太陽能電池的發展,並回顧有機小分子太陽能電池、有機高分子太陽能電池、有機/無機矽晶混成太陽能電池與有機/無機鈣鈦礦太陽能電池的歷史及現況發展。 第二章中,概述太陽能電池的元件特性與有機小分子太陽能電池與有機/無機混成太陽能電池的運作原理以及光電特性,接著介紹元件結構、有機材料的準備與分析、元件製作流程,最後為元件量測方法。 第三章中,我們針對一系列acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) 子做為有機太陽能電池中的施體,藉由不同濕式製程方法、不同元件結構與搭配不同受體改善元件效率。其中,優化過後JW2具備最佳表現,開路電壓為0.85 V,短路電流為5.26 mA/cm2,填充因子為0.39,效率達1.7 %。 第四章中,我們使用紫外光臭氧法生成表面鈍化層以製作平面型有機/無機混成矽晶太陽能電池,並進一步探討鈍化層的光電特性對於元件效率的影響。接下來,將透明介電材料與金屬的層疊結構應用於平面型有機/無機混成矽晶太陽能電池。最後,我們於矽晶表面蝕刻金字塔結構,並利用光學顯微鏡與穿透式電子顯微鏡觀察表現特徵。 第五章中,我們首先使用溼式製程刮刀塗佈法與旋轉塗佈法製程鈣鈦礦薄膜,接著使用最佳表面特性之鈣鈦礦薄膜製程元件,優化過後最佳表現為開路電壓為0.87 V,短路電流為20.74 mA/cm2,填充因子為0.65,效率達11.7 %。進一步調控吸收層中鹵素比例,可以將效率提升至13.8 %。此章節最後一部分,我們嘗試使用不同電荷傳輸層並成功製程無氧化銦錫電極之鈣鈦礦太陽能電池。

並列摘要


In this thesis, I focus on the fabrication and characterization of solution-processed small molecule organic solar cells (SMOSCs) and organic-inorganic hybrid solar cells. In the first chapter, I briefly review the development of modern photovoltaics including SMOSCs, polymer solar cells, silicon/organic organic-inorganic hybrid solar cells and perovskite solar cells. In the second chapter, the operation principles and characteristics of organic and organic-inorganic hybrid solar cells are described, followed by the details of device structures, materials analyses, device fabrications and characteristics measurements. In the third chapter of the thesis, a series of acceptor-acceptor-donor-acceptor-acceptor (A-A-D-A-A) symmetrical small molecules are studied as donor material for solution-processed SMOSCs. Various fabrication methods, device structures and acceptor materials are used to optimize the cell performance. Among all compounds, JW2 gives the highest power conversion efficiency (PCE) of 1.7 %, with an open circuit voltage (Voc) of 0.85 V, a short circuit current density (Jsc) of 5.26 mA/cm2, and a fill factor (F.F.) of 0.39. In the fourth chapter, we fabricate planar-type organic-inorganic hybrid solar cells based on single crystalline silicon covered by organic hole transporting material poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). A simple surface passivation method: Ultraviolet (UV)-ozone treatment is demonstrated. The effects of Si/PEDOT:PSS interfaces on device performances are further studied. In the second part of this chapter, the dielectric material-metal-dielectric material (DMD) structures as transparent electrodes are applied to the planar-type organic-inorganic solar cells. Finally, pyramid structures are tested and investigated under optical microscope and scanning electron microscope. In the fifth chapter of the thesis, blade-coated and spin-coated perovskite films are first fabricated. High efficiency solution-processed perovskite solar cells with an optimized annealing time and electron transporting layer thickness deliver a PCE of 11.7 %, with Voc of 0.87 V, a Jsc of 20.74 mA/cm2, a F.F. of 0.65. The PCE is further improved to 13.8 % by fine tuning of the material composition in the perovskite absorbing layers. In the last part of this section, several transporting layers are inserted into the device structures and Indium Tin Oxide (ITO)-free perovskite solar cells are successfully fabricated.

並列關鍵字

無資料

參考文獻


100. A. Ibrahim, Analysis of Electrical Characteristics of Photovoltaic Single Crystal Silicon Solar Cells at Outdoor Measurements, Smart Grid and Renewable Energy, 2011, 02, 169.
1. C. Zuchora-Walske and M. McGehee, Solar Energy, Essential Library, 2013.
2. J. Kruger, Ph. D. Thesis, 2003.
4. P. E. Tomaszewski and R. W. Cahn, Jan Czochralski and His Method of Pulling Crystals, MRS Bull., 2004, 29, 348.
7. D. M. Chapin, C. S. Fuller and G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 1954, 25, 676.

延伸閱讀