透過您的圖書館登入
IP:3.138.117.25
  • 學位論文

以奈米線指叉電極提升免疫分析晶片之偵測能力

Immunoassay Chip Using Interdigital Electrodes with Nickel-Cobalt Nanowires to Enhance Analysis Sensitivity

指導教授 : 張耀仁

摘要


本研究提出了結合銅指叉電極與鎳鈷合金奈米線之免疫分析晶片,利用 了固定化金屬親和層析法 (Immobilized metal affinity chromatography,IMAC),鎳鈷合金可與組胺酸標記蛋白質產生特異性結合之機制,在奈米線表面進行免疫反應。其中指叉電極是以黃光微影製程製作;鎳鈷合金奈米線則使用陽極氧化鋁模板,透過電化學的方式於孔洞中沉積鎳鈷合金,再經酸蝕刻的方式去除模板取得。實驗結果顯示,鎳鈷奈米線對His-tagged biotin 有特異性吸附能力且具有較大的表面積-體積比,因此相較於鎳鈷薄膜能夠吸附較多His-tagged biotin;而透過與指叉電極結合之感測器進行吸附能力檢測,可得到電流-電壓曲線並換算出響應值變化,其最低可量測到的濃度為142.9 ng/ml。另外利用此感測器進行免疫反應量測,得到之響應值與稀釋濃度的關係呈現負相關,且可測得之抗體最低濃度為714.2 ng/ml;而以螢光檢測免疫反應時,當抗體濃度到達1000 ng/ml 就無法量測出螢光值,此結果則確認出電性量測法擁有比螢光掃描法優異的靈敏度。

關鍵字

模板法 鎳鈷奈米線 組胺酸

並列摘要


This thesis presents an immunoassay analysis chip consisting of copper interdigitated electrodes (Cu-IDE) and nickel-cobalt alloy nanowires (Ni-Co NWs). The Ni-Co NWs have specific binding affinity with histidine-tagged proteins based on the principle of immobilized metal affinity chromatography (IMAC) so that the immunoassay can be performed on the Ni-Co NWs. The Cu-IDE was fabricated by the photolithography process; while the Ni-Co nanowires were synthesized by potentiostatic electrodeposition method using a porous anodic aluminum oxide (AAO) as template for nanowire growth. The experimental results show that Ni-Co NWs can immobilize more histidine-tagged biotins than Ni-Co film due to larger surface-to-volume ratio. The amount of the immobilized histidine-tagged biotin can be measured by means of current-voltage measurement if the concentration is greater than 142.9 ng/ml. After the immunoassays, the electrical response was found to be inversely proportioned to the concentration of the streptavidin-Cy5. The measurement limit was 714.2 ng/ml. However, the fluorescence intensity cannot be detected if the concentration of the streptavidin-Cy5 is lower than 1000 ng/ml. This proposed chip provides more sensitive electrical measurement than the fluorescent detection.

並列關鍵字

Template Ni-Co nanowires Histidine

參考文獻


[1] S. Yia, S. Tian, D. Zeng, K. Xu, X. Peng, H. Wang, S. Zhang, and C. Xie, “A Novel Approach to Fabricate Metal Oxide Nanowire-Like Networks Based Coplanar Gas Sensors Array For Enhanced Selectivity,” Sensors and Actuators B: Chemical, vol. 204, pp. 351 – 359, 2014.
[2] Q.N. Abdullah, F.K. Yam, Z. Hassan, and M. Bououdina, “Hydrogen Gas Sensing Performance of Gan Nanowires-Based Sensor at Low Operating Temperature,” Sensors and Actuators B: Chemical, vol. 204, pp. 497 – 506, 2014.
[3] X. Zhang, R. Ke, S. Zhang, H. Niu, J. Song, C. Mao, B. Jin, and Y. Tian, “One-Step Electrosynthesis and Photoelectric Conversion of Selenium Nanowires Wrapped with Graphene Quantum Dots,” Electrochimica Acta, vol. 168, pp. 116 – 124, 2015.
[4] T. Huang, Q. Meng, and G. Jie, “Silver Nanowires-Based Signal Amplification for CdSe Quantum Dots Electrochemiluminescence Immunoassay,” Biosensors and Bioelectronics, vol. 66, pp. 84 – 88, 2015.
[5] X. Cao, S. Liu, Q. Feng, and N. Wang, “Silver Nanowire-Based Electrochemical Immunoassay for Sensing Immunoglobulin G with Signal Amplification Using Strawberry-Like ZnO Nanostructures as Labels,” Biosensors and Bioelectronics, vol. 49, pp. 256 – 262, 2013.

延伸閱讀