本研究建立出氮化銦鎵多層量子井之非穩態鍍膜製程模型,探討多層 量子井之鍍膜速率及鍍膜化學組成隨鍍膜時間之變化。 研究中發現以單一完美攪拌反應器模型無法呈現多層量子井中氮化銦 的非穩態生長趨勢,分別進行了氮化銦鎵完整反應機制與簡化機制之探討與比較,兩者與文獻之實驗結果皆有相當差距存在,因此進行雙反應器的模型建立,探討四種雙反應器模型間的差異,並選取最佳模型進行深入探討。從單層量子井的研究結果中發現,單一反應器轉換為雙反應器時,氮化銦之鍍膜趨勢有延後的現象,改變雙反應器之體積比(γ)及流速交換比(β)可改變氮化銦之非穩態鍍膜速率,藉由此二參數之調整,發現模型計算結果可與文獻發表之實驗數據非常相近。 最後進行多層量子井之非穩態鍍膜模擬,發現本模型可成功模擬出實 驗所觀測到的特殊現象,即氮化銦於氮化銦鎵鍍層中之組成比例會隨鍍膜層數增加而略微提升,且本模型計算出之氮化銦鎵/氮化鎵的鍍層厚度與文獻結果相當吻合,因此,本模型可有效運用於業界之氮化銦鎵多層量子井製程模擬。
In this study we established a model to investigate the unsteady-state growth of GaN/InGaN multiple quantum wells (MQWs) by metal organic chemical vapor deposition (MOCVD) and discussed the time dependence of GaN/InN growth rate and InN molar fraction in InGaN. It is found that one CSTR reactor model could not fully predict the InGaN unsteady-state growth trend. Thus, a new reactor model which consists of two CSTRs with interchange was used in this study. By controlling reactor volume ratio(γ) and exchange flow rate(β), the new model can fully express the unsteady-state growth trend of GaN/InGaN multiple quantum wells found in the experimental results reported in the literature. Thus, the new reactor model with suitable reaction mechanism developed in this research can be used in the LED industry to simulate the unsteady-state thin-layer growth of GaN/InGaN MQWs.