透過您的圖書館登入
IP:3.148.102.90
  • 學位論文

以金屬有機化學氣相沉積製備氮化鎵/氮化銦/氮化銦鎵之製程模擬與反應動力學研究

The study of simulation and kinetic analysis for GaN/InN/InGaN by metal organic chemical vapor deposition

指導教授 : 魏大欽

摘要


本研究建立氮化鎵、氮化銦及氮化銦鎵之金屬有機化學氣相沉積反應機制,以零維反應器模型求解。並利用物種生成速率分析(Rate-of-production Analysis),探討不同操作參數對鍍膜製程之影響。 研究發現,文獻建立的氮化鎵化學反應機構可被有效簡化且不失模型精準度。當溫度介於900K到1300K之間為最佳製程溫度,此溫度區間達最大鍍膜速率且速率由進氣三甲基鎵流量所控制;溫度在1400K時,壓力的變化明顯影響到表面物種分佈,導致鍍膜速率的改變。壓力的改變,則因高溫脫附區,壓力對反應物種覆蓋率有所影響而改變鍍膜速率。由氮化銦的模型結果可發現溫度在973K之前,鍍膜速率隨著溫度提升而上升; 973K以後,氮化銦本身的熱裂解導致鍍膜速率的降低,壓力的變化則明顯影響到鍍膜速率。研究發現,壓力的提高可提升反應物的滯留時間及反應物種覆蓋率,而使鍍膜速率上升。結合以上兩模型所建立的氮化銦鎵模型,可清楚地呈現不同操作參數對其含銦量及鍍膜速率的的影響,利用不同的氣相進氣銦鎵比,可明顯地改變固相中的含銦量。除了受進氣銦鎵比影響之外,溫度的變化可明顯地影響氮化銦本身熱裂解的程度,壓力的改變則可影響反應物種覆蓋率,使固相含銦量有所改變。 本研究所建立的模型可有效地探討金屬有機化學氣相沉積中複雜的化學反應機制,化簡過後的模型計算結果與實驗數據相當吻合,將其應用於未來二維及三維等複雜反應器模型,可有效地提升運算速度並保有精準度。

並列摘要


A zero-dimension reactor model and the chemical mechanisms of GaN / InN / InGaN metal organic chemical vapor deposition (MOCVD) have been investigated in this research. The influence of the process parameters is discussed by Rate-Of-Production analysis. It is found that GaN reaction mechanism from literature can be successfully reduced and the model predictions agree with the experimental data. The model shows that the optimal temperature range for GaN MOCVD is from 900K to 1300K at diffusion-limit regime. The results of InN model show that the growth rate increases as temperature increases at kinetic-limit regime. However, the profile of growth rate at diffusion-limit regime is different from GaN model because the decomposition of InN occurs. The results indicate that the resident time is responsible for the effect of pressure on the growth rate in addition to the change of the surface species coverage. Lastly, we combine both GaN and InN models to establish the InGaN model and investigate the effects of the inlet gas ratio, temperature and pressure to the InGaN growth rate and indium composition of the film. This research has successfully established the model to deal with the complex chemical mechanism in InGaN MOCVD. All models agree with the experimental data. Thus, it enables to reduce the complexity of 2-D and 3-D modeling calculation.

並列關鍵字

MOCVD kinetic model InGaN

參考文獻


[1] T. K. Seki Y, Lida K, Ichiki E, "Properties of epitaxial GaAs layers from a Triethylgallium and Arsine system," Joumal of Electrochem Society, vol. 122, pp. 1108-1112, 1975.
[2] A. V. Saxena R R, Cooper C B, et al. , "High-efficiency GaAlAs concentrator aolar cells by MOCVD," Joumal Appiedl Physics, vol. 51, pp. 4501-4503, 1980.
[3] K. M. Amano H, Hiramatsu K, Akasaki I, "P-type conduction in Mg-doped GaN treted with low-energy electron beam irradiation (LEEBI)," Japanese Joumal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
[4] 盧勁甫, "高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析," 中央大學, 碩士論文, 2015.
[6] A. G. Thompson, "MOCVD technology for semiconductors," Journal of Materials letters, vol. 30, pp. 255-263, 1996.

被引用紀錄


陳詩傑(2017)。以金屬有機化學氣相沉積法製備氮化鎵/氮化銦鎵多層量子井之非穩態模型研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700493

延伸閱讀