當電力系統加入大量負載或是再生能源時,容易對系統的電壓產生影響,而造成系統電力品質不良。本論文利用粒子群最佳化演算法調整區間第二型模糊控制器中歸屬函數的參數,再將控制器應用於靜態同步補償器(STATCOM)中,並分別與傳統第一型模糊控制器以及比例-積分控制器(PI)進行分析比較。 本論文在MATLAB/simulink環境下建立一個配電系統,此系統包含太陽能發電系統及STATCOM,其中STATCOM分別加入粒子群最佳化演算法結合區間第二型模糊的控制器、傳統第一型模糊控制器以及PI控制器。接著針對不同電壓源和太陽能日照度的變化進行討論,所求出最適合系統的STATCOM控制參數,證明粒子群最佳化演算法結合區間第二型模糊控制器應用STATCOM中,有助於更快速且精確地穩定系統電壓,提升電力品質。
When the power system increases a lot of load or renewable energy, it is easy to have an impact on the system voltage and the system power quality becomes poor. This thesis uses particle swarm optimization (PSO) algorithm to adjust the membership function’s parameters of interval type II fuzzy controller applied to the STATCOM. Power quality is analyzed by comparing with that obtained by the proposed method, the fuzzy controller and PI, respectively. This thesis builds a distribution system in the MATLAB / simulink environment. This system contains photovoltaic generation system and STATCOM. The STATCOM is incorporated with interval type II fuzzy controller which was combining with PSO, traditional first type fuzzy controller and PI respectively. Then, voltage sources and solar radiations were varied, in order to find the optimal parameters of interval type II fuzzy controllers. From the simulation results, it can be found that the proposed interval type II fuzzy controller tuned by PSO can effectively improve the system voltages.