透過您的圖書館登入
IP:3.136.22.50
  • 學位論文

高溫薄型玻璃模造技術建置與製程條件控制之研究

Study on Establishment of High Temperature Glass Molding Technology and Its Application to Thin-Plate Glass Molding Process

指導教授 : 陳夏宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 近年來玻璃觸控面板應用範圍趨廣,消費者對觸控面板的要求也異於以往,便利用熱壓成型技術將玻璃之觸控面板製作成3D曲面造型。本論文以熱壓玻璃模造製程技術針對高溫薄型玻璃之流動變形進行機台建置及製程參數控制之研究,同時運用有限元素法理論來模擬分析在熱壓過程中之流動成型行為。 本研究中,選用可耐高溫之碳化鎢做為平面模仁材料,接著利用磁控濺鍍技術來進行鉑銥合金之膜層附著,玻璃預型體則是選擇長92.5mm、寬41.8mm、及厚0.85mm之B_270薄型玻璃作為熱壓成型材料。探討熱壓模造成型製程中成型溫度、成型壓力、及持壓時間等參數變化對於流動變形之影響性。最後,採用有限元素分析軟體ANSYS Multiphysics 11及其141號流體元素建構模型,有效地模擬出在熱壓過程中玻璃材料的流動變形情形,並與實驗結果進行討論。 研究結果顯示,當成型溫度提升時,會造成玻璃黏度下降且變化率會隨之增大,相對地,形變量也會明顯提高,因此可得知成型溫度對玻璃流動變形是為重要關鍵性參數。但是成型溫度提升的同時,玻璃與膜層之間的化合反應也會隨之增加,且鉑銥合金之膜層強度會逐漸降低,因此將會有嚴重的黏膜現象及較高的摩擦力產生,導致玻璃成型過程中之內應力過大而造成破裂。在分析中,將高溫下之玻璃視為牛頓黏滯流體。從模擬分析結果得到當玻璃成型品所需形變量越大時,此時成型壓力也就需提高。而玻璃之高寬比及模穴曲面角度都逐漸增大時,流動變形所受到的阻力相對隨之提升,因此成型壓力也須提升才能達到所需形變量。

並列摘要


ABSTRACT The purpose of this study was to use the hot embossing process in order to establish high temperature glass molding technology and its application to the thin-plate glass molding process as well as use the Finite Element Method (FEM) to analyze the flow molding behavior of thin-plate glass. In this study, we selected tungsten carbide as the mold material because of its ability to withstand high temperatures and magnetron sputtering technology as the mold coating film. The thin-plate glass preforms were 92.5mm long, 41.8mm wide, and 0.85mm thick and the effects of molding temperature, molding pressure, and holding time on flow deformation of the thin-plate glass were observed. The results were then compared to an ANSYS Multiphysics 11 simulation using the Finite Element Method and fluid square elements. From the results, we find an increase in the molding temperature lowers the viscosity of the glass and thus significantly increases the deformation. There is also increased chemical reaction between the glass and film, and the film strength of the Pt/Ir allow is gradually decreased, leading to broken glass. At the analysis process, we definited the high temperature glass was a Newtonian viscous fluid. From the simulation results, the amount of deformation in the glass is directly related to the pressure applied. The flow resistance is directly related to both the aspect ratio of the thin-plate glass and the cavity bending angles. Therefore, molding pressure must be increased to achieve the required deformation.

參考文獻


6.謝仲岳、吳宗憲等人,“光學玻璃與各種抗沾黏膜及模仁材料間界面化學反應之研究”,中國機械工程學會第二十五屆全國學術研討會,2008年11月
7.林祐瑞、謝仲岳等人,“光學玻璃表面處理及抗沾黏膜層設計對其界面化學反應影響之研究”,中國機械工程學會第二十六屆全國學術研討會,2009年11月
16.洪育民,“玻璃微奈米結構壓印成型及應用之研究”,國立清華大學,2009年
4.US patent 3833347,“Method for Molding Glass Lenses”, Eastman Kodak Company Sep. 3,1974
11.J. Yan, T. Zhou, J. Masuda, T. Kuriyagawa, “Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis”, Precision Engineering, 33, 150-159, (2009)

延伸閱讀