透過您的圖書館登入
IP:18.216.32.116
  • 學位論文

雙離子型高分子結構界面之精準聚合控制及其人體血液相容性質探討

Interfacial polymerization control of zwitterionic polymer structures and investigation of their human blood compatibility

指導教授 : 張雍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文將針對雙離子材料之界面聚合控制與血液相容性質研究提出兩方面的新論點,第一個論點是著重於雙離子化表面改質方法的創新設計,第二個論點是著重於雙離子材料之功能性提升,並經由系統性的論證模型設計與實驗量測結果來驗證新論點之正確性。 論文第一部分將針對材料表面的雙離子官能基化提出新的改質方法,並期待未來能通用於各式材料系統之基材表面修飾,以提升其血液相容性質。本研究所採用之表面改質概念主要為結合基材表面化學吸附法與表面起始原子轉移自由基聚合法來進行。論證模型系統主要是以多巴胺(Dopamine)分子於帶有氫氧基團之矽基材表面形成聚多巴胺分子層,藉由一級胺官能基可將其轉換為溴基團之活化點,搭配原子轉移自由基聚合法來控制雙離子刷狀高分子的接枝密度。在血液相容性質方面的探討,將以人體血液中之血漿蛋白、血小板、紅血球以及白血球進行吸貼附測試,同時亦觀察材料界面之溶血情形。 論文第二部分將針對材料表面的雙離子官能基之正電荷偏差與負電荷偏差進行精準聚合控制,並系統性的研究含雙離子電荷偏差之基材界面與血液中各式蛋白及血球之相互作用情形,以定義出不同結構界面之功能性。論證模型系統主要是以帶有四級胺之正電荷官能基與帶有硫酸根之負電荷官能基,透過定量之混合比例控制刷狀高分子的雙離子電荷偏差性質,並以X光光電子能譜儀來鑑定與估算正電荷與負電荷之官能基相對比例。研究中將系統性的觀察血液中之血漿蛋白、血小板、紅血球以及白血球在不同比例之含雙離子電荷偏差結構界面之吸貼附情形,以定義出其不同之血液相容性質,可供未來製備功能性血液相容性材料之設計參考原則。

並列摘要


The research supports two novel prospects on interfacial polymerization of zwitterionic polymer and the compatibility of human blood. The first statement focuses on the innovation of surface modification on zwitterionic materials. In addition, the second statement emphasizes on the promotion of the functionality of zwitterionic materials. The experimental design and systematic hypothesis model is proved. The initial part of this work proposes a new method of modification which can be practiced on the general surface of zwitterionic functionality in order to increase the hemocompatibility. The concept of surface modification is processed by combining chemical adsorption and Atom Transfer Radical Polymerization (ATRP). The hypothesis model system uses Dopamine on the surface of saline with hydroxyl groups to form polydopamine layers. Then, the primary amino groups are transferred to the activity with alkyl bromide groups which control the grafting density of zwitterionic polymer brush by ATRP. To show the blood compatibility, the adsorption of plasma protein and the adhesion of platelets, red blood cells, and white blood cells are measured and the hemolysis on material surface is observed. The second part of the research targets on utilizing the zwitterionic group’s positive-bias and negative-bias to control the interfacial polymerization precisely. In addition, the interactions between the surfaces of zwitterionic charge-biases and plasma proteins or blood cells are studied systematically, which also defines the functionality of various interfaces. The model system hypothesis is built through the quantitative mixing of a positive quaternary ammonium group and a negative sulfonated group to control the charge-bias property of a polymer brush. X-ray photoelectron spectroscopy was induced to estimate the ratio of negative and positive charging group. The adhesion of plasma protein, platelets, red blood cells and white blood cells on the interface with different ratios of zwitterionic-bias is observed to provide the design principle for developing the functional material with excellent hemocompatility in the future.

參考文獻


5. Gorbet, M. B.; Sefton, M. V., Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25 (26), 5681-5703.
6. Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69-117.
7. Goertz, M. P.; Houston, J. E.; Zhu, X. Y., Hydrophilicity and the Viscosity of Interfacial Water. Langmuir 2007, 23 (10), 5491-5497.
8. Hunter, R., Foundations of Colloid Science. Oxford Science 1989,Vol. I.
9. Johnson, C. A.; Wu, P.; Lenhoff, A. M., Electrostatic and Van-Der-Waals contributions to protein adsorption: 2 Modeling of ordered arrays. Langmuir 1994, 10 (10), 3705-3713.

延伸閱讀