透過您的圖書館登入
IP:3.147.54.6
  • 學位論文

以開環雙離子化反應製備生物啓發型交替共聚合物於血液相容性薄膜之改質探討

Bio-inspired alternating copolymer via ring opening zwitterionization for hemocompatible membrane modification

指導教授 : 張雍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


生物沾黏(Bio-fouling)是薄膜科技在使用上遇到的最大問題,過去研究顯示,雙離子性材料改質薄膜能有良好抗生物沾黏性質。此研究擬以表面改質技術來改善薄膜生物沾黏的問題,並且保有原本薄膜之物理特性,以達到薄膜最佳使用效能。 本研究使用Poly(maleic anhydride-alt-1-octadecene)(MAO)前驅高分子,以開環反應分別將N,N-dimethylenediamine(DMEA)及3-(dimethylamino)-1-propylamine(DMPA)修飾MAO分子鏈段,合成出兩種新的雙離子型高分子(i)p(MAO-DMEA)及(ii)p(MAO-DMPA),並以此兩種高分子於聚氟化乙二烯(Polyvinylidene fluoride, PVDF)薄膜表面進行分子自組裝改質。由X光電子光譜儀(XPS)鑑定表面元素證明成功改質表面,藉由孔隙度測試顯示不同的表面改質密度(0-1 mg/cm2)不影響原本膜材之物理結構(孔洞)。然而,p(MAO-DMEA)高分子塗佈於薄膜表面能增進膜材表面之親水性與水合能力。研究中,p(MAO-DMPA)之正、負電基團間距相較p(MAO-DMEA)多一個碳原子之距離。為探討雙離子性高分子鏈中正、負電基團間距對於生物沾黏性質的影響,以蛋白質吸附檢測與細菌貼附測試進行其抗生物沾黏之測試,並進一步以人體血液成分包含血小板、紅血球、與白血球貼附測試。電荷分布之狀態可能會降低水合能力,進而影響高分子在抗生物沾黏或血液相容性材料上的表現效果。因此,此研究結果指出雙離子基團中之正、負電基團間距控制會影響其抗生物沾黏性質表現。

並列摘要


Bio-fouling is a major problem in application of membranes. In general, membranes modified with zwitterionic functionalities polymer reduced the surface fouling. Not only surface modification improved the problem of Bio-fouling, also membranes retained all properties that in order to achieve the highest operation performance. In this work, polymers of (i) maleic anhydride-alt-1-octadecene and N,N-dimethylenediamine [p(MAO-DMEA)], and (ii) maleic anhydride-alt-1-octadecene and 3-(dimethylamino)-1-propylamine [p(MAO-DMPA)] were synthesized by ring opening reaction, and used to modify polyvinylidene fluoride membranes. Surface modification was well controlled as evidenced by X-ray photoelectron spectroscopy(XPS), leading to homogeneous surfaces, without reduction of surface porosity for all range of coating densities tested (0-1 mg/cm2). However, p(MAO-DMEA) better improved hydration properties of membranes. Antifouling tests (protein adsorption, bacterial attachment) and the assessment of blood compatibility – adhesion of thrombocytes, erythrocytes or leukocytes, evaluation of hemolytic – suggested the important role on biocompatibility of the number of carbons in space between electropositive and electronegative sites. p(MAO-DMPA) contains one more carbon atom than p(MAO-DMEA): uneven charge distribution decreases the extent of hydration, then affecting the effectiveness of polymer as an antifouling/hemocompatible material. Therefore, this work reveals the important role of carbon spacer on the efficiency of novel hemocompatible zwitterionic polymers.

參考文獻


102. 施侑汝. 製備含甲基苯烯酸聚乙二醇酯之低生物結垢性高分子薄膜於抗人體血漿蛋白吸附與血小板貼附之研究. 中原大學, 桃園縣, 2008.
1. Diego Meseguer Yebra; Søren Kiil; Kim Dam-Johansen. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 2004, 50, 75-104.
2. Sergey Dobretsov; Hans-Uwe Dahms; Peri-Yuan Qian. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling, 2006, 22, 43-54.
3. L. D. Chambers; K. R. Stokes; F. C. Walsh; R. J. K. Wood. Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 2006, 201, 3642-3652.
4. Yung Chang; Yu-Ju Shih; Chao-Yin Ko; Jheng-Fong Jhong; Ying-Ling Liu; Ta-Chin Wei. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface pegylation. Langmuir, 2011, 27, 5445-5455.

延伸閱讀