透過您的圖書館登入
IP:13.59.100.42
  • 學位論文

製備含甲基苯烯酸聚乙二醇酯之低生物結垢性高分子薄膜於抗人體血漿蛋白吸附與血小板貼附之研究

Biofouling-resistance polymeric membrane grafted with surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein and blood platelet repulsions

指導教授 : 張雍

摘要


要如何有效控制材料於生物系統中,生物分子與其接觸界面間所發生之不特定分子吸附行為,對於未來發展可用於人體體內與組織系統接觸的醫療材料是重要的課題。在本研究中,透過表面改質技術將甲基苯烯酸聚乙二醇酯(poly(ethylene glycol)methacrylate, PEGMA)接枝聚合於高分子膜材上,並分析其與人體血漿蛋白與血小板之貼附情形。 本文第一部份以臭氧處理及自由基熱聚合方法將PEGMA接枝於聚氟化乙二烯(poly(vinylidene fluoride), PVDF)之薄膜表面,並於製備過程中以2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH)量測PVDF薄膜表面之自由基活化程度。改質後之薄膜表面物理結構及化學特性的鑑定,可透過紅外線光譜儀、親疏水接觸角量測儀、原子力顯微鏡及掃描式電子顯微鏡來進行量測。研究中亦對於PEGMA於PVDF薄膜表面接枝程度進行分析量測,並探討PEGMA接枝量對於膜材表面親水化與物理微結構變化的影響,及觀察其與血漿蛋白吸附與血小板貼附現象之關聯性,同時進ㄧ步探討所製備之薄膜其抗生物結垢之過濾效能。 本文第二部份以嵌段式聚氨基甲酸酯(segmented polyurethane, SPU)為基材膜,使用臭氧處理及表面自由基熱聚合方法將抗生物沾黏材料之甲基苯烯酸聚乙二醇酯(poly(ethylene glycol)methacrylate, PEGMA)接枝在薄膜 表面。研究系統中,薄膜表面結構及物理特性的鑑定可透過紅外線光譜儀(FT-IR)、親疏水接觸角量測儀(CA)、原子力顯微鏡(AFM)及掃描式電子顯微鏡(SEM)來進行量測。研究中亦針對接枝單體於SPU薄膜表面接枝程度進行控制,並探討不同PEGMA接枝量對於膜材表面親水化、物理微結構之改變,並且更進一步探討SPU表面親水程度對於血漿蛋白相對吸附量血小板貼附情形之影響。

並列摘要


The effective control of a material surface that affect biological response is of fundamental importance for the development of biomaterials, especially when living systems encounter synthetic surfaces. In this work, we demonstrate biofouling-resistance polymeric membrane grafted with surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein and blood platelet repulsions. In the first part of this disseration, the work describes the surface modification and characterization of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes grafted with poly(ethylene glycol) methacrylate (PEGMA) via surface-activated ozone treatment and thermally induced graft copolymerization. The chemical composition and microstructure of the surface-modified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), contact angle, and atomic force microscopy (AFM) measurements. Blood compatibility of the modified membranes was evaluated by the biofouling property of the platelet adhesion observed by scanning electron microscopy (SEM) and the plasma protein adsorption determined by an enzyme-linked immunosorbent assay (ELISA). In general, the grafting density of the copolymerized PEGMA and the hydrophilicity on the surface of PVDF MF membranes increase with increasing macromonomer concentration of PEGMA in the reaction solution. The grafting distribution of PEGMA on the resulting membranes was found to form a uniform polymer hydrogel-like layer controlled by sufficient high content of PEGMA in the reaction solution, while their surface roughness was kept lower than that of the virgin membrane. For the platelet adhesion test, a remarkable suppression of the platelets adhered to the PVDF MF membranes grafted with PEGMA polymer was observed. In the water flux experiments, the PEGMA-grafted hydrophilic PVDF MF membranes exhibited good anti-fouling properties to substantially reduce the irreversible membrane fouling caused by platelet adhering and plasma protein adsorption as compared with the virgin hydrophobic PVDF MF membranes. In the second part of this disseration, we prepare the polymeric materials with high blood compatibility, which can provide the ability to prevent the thrombin activation of catheters in the future. This work describes the surface modification and characterization of segmented polyurethane (SPU) films grafted with poly(ethylene glycol) methacrylate (PEGMA) respectively via surface-activated ozone treatment and thermally induced graft copolymerization. The chemical composition and microstructure of the surface-modified SPU films were characterized by Fourier transform infrared spectroscopy (FT-IR), contact angle, and atomic force microscopy (AFM) measurements. Blood compatibility of the modified membranes was evaluated by the biofouling property of the platelet adhesion observed by scanning electron microscopy (SEM) and the plasma protein adsorption determined by an enzyme-linked immunosorbent assay (ELISA). This study not only determines the grafting quality with PEGMA, but also provides a fundamental understanding of various grafting density governing the effects on hydrophilicity, surface morphology and plasma proteins adoption of film surfaces.

並列關鍵字

PVDF

參考文獻


2. Caliceti, P., et al., Controlled Release of Proteins and Peptides from Hydrogels Synthesized by Gamma-Ray-Induced Polymerization. Farmaco, 1992. 47(3): p. 275-286.
3. Kulik, E.A., et al., Peroxide Generation and Decomposition on Polymer Surface. Journal of Polymer Science Part a-Polymer Chemistry, 1995. 33(2): p. 323-330.
4. Nie, F.Q., et al., Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer, 2004. 45(2): p. 399-407.
8. Li, L.Y., et al., Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
9. Zheng, J., et al., Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 2004. 20(20): p. 8931-8938.

被引用紀錄


黃文鈺(2015)。以開環雙離子化反應製備生物啓發型交替共聚合物於血液相容性薄膜之改質探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500416
施曉琳(2014)。常壓電漿接枝類雙離子材料於高分子薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400497
蔡怡妮(2011)。平板式常壓電漿快速接枝甲基丙烯酸聚乙二醇 酯在聚偏二氟乙烯薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201100654
張家仁(2009)。常壓電漿接枝甲基丙烯酸聚乙二醇酯在聚四氟乙烯 薄膜之抗生物沾黏材料運用與探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200900847

延伸閱讀