透過您的圖書館登入
IP:3.147.73.35
  • 學位論文

新穎含胺基雙苯並三唑苯酚氧基之金屬錯合物合成結構鑑定、光性質分析以及應用於環酯類開環聚合反應與二氧化碳/環氧化物偶合反應

Synthesis, Characterization and Optical Properties of Metal Complexes Bearing Amino-bis(Benzotriazole Phenoxide) ligand: Catalysis for Ring-Opening Polymerization of Cyclic Esters and Carbon Dioxide/Epoxides Coupling reaction

指導教授 : 陳志德 柯寶燦
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


新穎含雙苯並三唑苯酚氧基(C1PPBiBTP2-, C1NNBiBTP2-)之配位基已成功地由Mannich反應合成,利用2-(2H-benzotriazol-2-yl)-4-methylphenol再加上過量的paraformaldehyde與一級胺類反應迴流即可獲得胺基雙苯並三唑苯酚氧基(amineBiBTP-H2)。新型配位基(C1PPBiBTP-H2)可與醋酸銅(Cu(OAc)2‧H2O)進行反應,然後再進一步與 4-dimethylaminopyridine, 4-picoline, 4-tertbutylpyridine, 1-methylimidazole等四種共配位基進行反應,成功地合成出一系列五配位之銅金屬錯合物(1)-(5)。再者,此兩種配位基(C1PPBiBTP-H2, C1NNBiBTP-H2)也可與鈦、鋯、鉿金屬進行反應,形成有氧做架橋之雙金屬錯合物或單核金屬錯合物。並藉由X-ray單晶繞射儀與元素分析儀鑑定十個金屬錯合物之結構及純度。此外,利用UV-Vis光譜儀測得五個銅金屬錯合物之紫外光區吸收波長介於270nm至290nm之間,莫耳吸收係數約2.71至5.01×104 (M-1cm-1)。而d-d transition的可見光區吸收,其最大波長介於686nm至760nm之間,莫耳吸收係數約165至228 (M-1cm-1)之間。應用於催化二氧化碳/環氧化物的偶合反應方面,由實驗結果顯示,銅錯合物(1)在最佳條件下(150psi, 50℃)反應9小時,轉換率可達95%,呈現出高生產率(TON=3800)及優異的反應性(TOF=422 h-1)。 另外在鈦、鋯和鉿金屬錯合物(6)-(10)的催化應用,對於環酯類開環聚合反應及二氧化碳/環氧化物共聚合反應,皆以雙鋯金屬錯合物(9)表現最為顯著。在左旋乳酸交酯開環聚合反應中,不僅具有“living”也擁有“immortal”的性質。也有對外消旋乳酸交酯進行立體選擇性的探討,聚合狀態傾向於isotatic的排列方式,Pm值為0.70。最後在對於二氧化碳/環氧環己烷 (cyclohexene oxide, CHO)的共聚合反應方面,在100℃、500psi,並無外加任何助催化劑條件之下,可成功合成出聚碳酸酯共聚合物,顯現出此一雙金屬錯合物對環酯類開環聚合反應及二氧化碳/環氧化物共聚合反應皆有不錯的催化活性與控制性。

並列摘要


A novel amino-bis(benzotriazole phenoxide) ligand (amineBiBTP-H2), C1PPBiBTP-H2 and C1NNBiBTP-H2 was prepared from the Mannich condensation of 2-(2H-benzotriazole-2-yl)-4-methylphenol with the mixtures of excess paraformaldehyde and primary amine under reflux conditions. The reaction of C1PPBiBTP-H2 with copper acetate in the absence or in the presence of four kinds of neutral co-ligand (4-dimethylaminopyridine, 4-picoline, 4-tertbutylpyridine, 1-methylimidazole). Also, amineBiBTP-H2 reacted with Titanium, Zirconium and Hafnium becoming dimer complexes with an oxygen as bridge in the between or a moomer complexes with two coordinated isopropoxide. A series of monomer five-coordinated copper complexes and Ti, Zr, Hf complexes have been successfully synthesized and structurally characterized by single crystal X-ray diffraction as well as microanalysis. The optical properties and catalysis for epoxides with carbon dioxide coupling reaction of copper complexes 1-5 were studied. The UV absorption wavelength of complexes 1-5 are ranging from 270-279 nm in solution. For their visible absorption, the maximum absorption wavelength (max) of d-d transition was observed in the range from 686 to 760 nm. Experimental results indicated that complex 1 is an active catalyst (TOF=120 h-1) for the coupling reaction of propylene oxide with carbon dioxide under mild conditions. For Ti, Zr, Hf metal complexes, Zr complex showed the best catalysis activity no matter for ring-opening polymerization of cyclic ester or copolymerization of cyclohexene oxide with carbon dioxide. There is not only in a ‘living’ manner with the expected molecular weights and narrow molecular weight distribution but also in an ‘immortal’ fashion for ring-opening polymerization of L-lactide (L-LA). Furthermore, Zr complex catalyzed rac-LA to yield heterotatic PLA (Pr=0.70). Finally, the copolymerization of cyclohexene oxide with carbon dioxide in the absence of co-catalyst to give poly(cyclohexene carbonate) under 100℃ and 500 psi. From above experiments reveal that Zr complexe is a bifunctional catalyst with excellent activity.

參考文獻


2. (a) J. C. Bogaert, P. Coszach, Macromol. Symp., 2000, 153, 287.
C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science, 2006, 311, 484. (b) S. Dutta, W.-C. Hung, B.-H. Huang, C.-C. Lin. Adv. Polym. Sci., 2012, 245, 219. (c) S. Mecking, Angew. Chem. Int. Ed., 2004, 43, 1078. (d) S. K. Ritter, Chem. Eng. News, 2002, 80, 26. (e) R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Master., 2000, 12, 1841.
4. M. Labet, W. Thielemans, Chem. Soc. Rev., 2009, 38, 3484.
5. B. O’Keefe, M. A. Hillmyer, W. B. Tolman. J. Chem. Soc. Dalton Trans., 2001, 2215.
11. (a) Y. Huang, W.-C. Hung, M.-Y. Liao, T.-E. Tsai, Y.-L. Peng, C.-C. Lin, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 2318. (b) M. Cheng, A. B. Attygalle, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 1999, 121, 11583. (c) C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G. Jr. Young, M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc., 2003, 125, 11350.

延伸閱讀