透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

二氧化碳在鉀鹽(L-脯氨酸及α-氨基丁酸)水溶液中之平衡溶解度量測研究

Equilibrium Solubility of CO2 in Aqueous Potassium Salt Solutions of L‐Proline and α‐Aminobutryic Acid

指導教授 : 李夢輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究量測CO2在兩種鉀鹽α-氨基丁酸 (AABA) 及L-脯氨酸(L-Proline) 水溶液中的氣液平衡溶解度數據,在一大氣壓下吸收過程中均無沉澱產生;本研究包括兩種系統,其中AABA為立體障礙胺基酸,在H2O中與KOH莫耳混和混合成鉀鹽水溶液,濃度分別為:0.5 、1.0 及2.0 ;溫度為40及80ºC;二氧化碳分壓範圍:1 ~ 1000 kPa。另一為成份為環狀胺基酸,在H2O中與KOH莫耳混和混合成鉀鹽水溶液,濃度分別為:0.5 、1.0 及2.0 ;溫度為40至80ºC;二氧化碳分壓範圍:1 ~ 1000 kPa。 因為胺基酸鹽水溶液之表面張力大、揮發度小及良好氣提等不錯的特性,因此被考慮做為二氧化碳吸收劑,並使用批次氣體循環式反應槽來進行反應,所得之氣液平衡溶解度數據最後由modified Kent and Eisenberg之熱力學模式推導出為二氧化碳分壓及溫度之方程式進行氣液平衡描述,預測之後標準差分別是15.4及12.4%。本研究結果顯示在1M 濃度、40ºC下,每莫耳胺基酸鹽水溶液能吸收0.7莫耳之二氧化碳,做為以胺基酸鉀鹽水溶液為吸收劑吸收二氧化碳之程序設計基本數據,以發展節能、經濟之二氧化碳吸收程序。

並列摘要


The equilibrium solubilities of CO2 in the potassium salt solutions of L‐Proline and α‐Aminobutryic acid were measured at temperatures (40 to 80) ºC and pressures (1 to 1000) kPa using a vapor recirculation equilibrium cell. The amino acid salt systems studied 0.5, 1.0 and 2.0 potassium salt solutions of α-Aminobutryic and 0.5, 1.0 and 2.0 potassium salt solutions of L‐Proline. Aqueous amino acid salts are kind of absorbent and characterized by more favorable properties, like low volatility and higher surface tension, high level of biodegradability in combination with low toxicity. The vapor-recirculative- equlibrium cell is used. The solubility data were correlated as function of CO2 partial pressure, temperature and amino acid salt concentration using a modified Kent-Eisenberg model. Results showed that the experimental data were satisfactorily represented by the applied model with acceptable absolute average deviations (AAD) of 15.4% and 12.4% for the potassium salt solutions of α-Aminobutryic acid and L‐Proline, respectively. The results of this study can be used in the design of processes for the absorption of CO2 using the aqueous potassium amino acid salt solution as CO2 absorbents.

並列關鍵字

CO2 absorbtion amino acid salt Solubility

參考文獻


Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795-6803.
Chang, Y. C.; Leron, R. B.; Li, M. H. Equilibrium solubility of carbon dioxide in aqueous solutions of (diethylenetriamine+piperazine). J. Chem. Thermodyn. 2013, 64, 106-113.
Danckwerts, P. V. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979, 34, 443-446.
Fredriksen, S. B.; Jens, K. J. Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, PZ: A review. Energy Procedia 2013, 37, 1770-1777
Glasscock, D. A.; Critchfield, J. E.; Rochelle, G. T. CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. Chem. Eng. Sci. 1991, 46, 2829-2845.

延伸閱讀