透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

結合群體智能與互動網頁技術於多自主行動機器人之研究

A Study on Integration of Swarm Intelligence and Interactive Web Technology into Multiple Autonomous Mobile Robots

指導教授 : 陳冠宇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,智慧型機器人科技的研發有著顯著的進步,除了用於自動化生產線的工業機器人以外,針對人類各種不同的生活需求,許多服務型機器人因應而生。假設在一智慧型辦公大樓中,欲由多部機器人擔任各式文件及物品的收發與傳遞等工作,可預期樓管單位須建置一套控制系統,能隨時因應各辦公室成員指派工作的變化,權衡當時各機器人的位置、狀態與工作量,動態調整各機器人的任務分配。本文使用群體智能演算法解決此多部機器人的任務分配及最佳化路徑規劃的問題。此外,本文整合ASP.NET伺服端動態網頁、MS-SQL資料庫、AJAX非同步處理及HTML5等技術,以互動式網頁技術開發友善的圖形化使用者介面,有別於傳統的應用程式,使用者不需額外安裝軟體,只需使用網頁瀏覽器即可進入操作介面,即時監看所有服務型機器人的動態狀態。

並列摘要


In more recent years, the science and technology for the research and development of intelligent robots have progressed tremendously. In addition to industrial robots for the use of automated production lines, many service robots are developed for various needs of human life. Assume that multiple robots serve in an intelligent office building for receipt and forwarding of all kinds of documents and goods. In response to the changes in assigned tasks by every staff in different offices, we can expect the building management department needs to develop a control system for dynamic task assignment of each robot after considering its current position, status and task loading. Swarm intelligence algorithms are used in this thesis to solve the problems of tasks assignment and optimal path planning. Furthermore, the thesis apply interactive web technologies to build a user-friendly web-based graphical user interface by integration of server-side scripting technology for dynamic web pages (ASP.NET), MS-SQL database, asynchronously JavaScript technology and XML (AJAX), and HTML5. Unlike conventional applications, users need not install other software to access and monitor real-time status of all service robots on the operating interface only via a web browser.

參考文獻


[27] 徐嘉吟, 黃士滔, “應用改良的最大最小螞蟻系統於旅行推銷員問題,” 工程科技與教育學刊, Vol. 6, No. 3, pp. 324-331, 2009.
[1] “iRobot,” http://www.irobot.com, Retrieved June 10, 2014.
[7] Qiang Zhang, Qiuwen Zhang, “An Improved Ant Colony Algorithm for the Logistics Vehicle Scheduling Problem,” IEEE Second International Symposium on Intelligent Information Technology Application, pp. 55-59, Dec. 2008.
[8] Meijuan Gao, Xu, J., Jingwen Tian, ” Mobile Robot Global Path Planning Based on Improved Augment Ant Colony Algorithm,” IEEE Second International Conference on Genetic and Evolutionary Computing, pp.273-276, Sept. 2008.
[10] Khakmardan, S.,Poostchi, H.,Akbarzadeh-T, M.-R., “Solving Traveling Salesman Problem by a hybrid combination of PSO and Extremal Optimization,” IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1501 – 1507, July 31 - Aug. 5, 2011.

被引用紀錄


王薇晴(2015)。基於群體智能演算法與互動網頁技術之多機器人任務分配與路徑規劃〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500800

延伸閱讀