透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

基於群體智能演算法與互動網頁技術之多機器人任務分配與路徑規劃

Task Allocation and Path Planning for Multiple Robots Based on Swarm Intelligence Algorithms and Interactive Web Technology

指導教授 : 陳冠宇

摘要


隨著科技的進步,貼近人類生活的服務型機器人開始出現在人類的生活周遭,而本文發展多部自主型服務機器人在辦公大樓的樓層間協助傳遞文件或包裹,使用者能指派多個不同的任務,由機器人執行辦公室間的遞送工作,利用群體智能演算法解決複雜工作環境下多任務的分配及路徑規劃問題,使任務有效率的分派給多部機器人並且規劃出各自分配任務的最佳路徑,讓自主型服務機器人能合理有效率的協助人類辦公。此外,本文使用ASP.NET伺服端動態網頁搭配MS-SQL資料庫,以及HTML5和使用AJAX非同步處理即時更新網頁內容等技術。有別於傳統應用程式,使用者不需安裝軟體,只要裝置具備網頁瀏覽器且能連上網際網路,即可操作友善的圖形化使用者介面,監看機器人的即時動態。

並列摘要


Robots, which serve human being’s life, started emerging in our life as the progress of technology and science. In this paper, the Autonomous mobile robot is able to deliver documents and package by following the task that assigned by commanders. Robots can accomplish the delivery missions. Swarm Intelligence Algorithms which assigns the tasks to several robots and plans the optimal path can solve the tasks allocation and route planning issue and makes Autonomous mobile robot assists human efficiently. Further more, the researcher fulfill this study by applying server-side dynamic web page, MS-SQL data base, HTML5 and AJAX asynchronous processing real-time updates Web content techniques. The above programs are different from the traditional applications. The merits of programs, which mentioned above is that user don’t need to install software. As long as the users have browser, which can connect to Internet in their computers, the operated-friendly interface can allow users watch the immediate movement of robots.

參考文獻


[31] 徐嘉吟, 黃士滔, “應用改良的最大最小螞蟻系統於旅行推銷員問題,” 工程科技與教育學刊, Vol. 6, No. 3, pp. 324-331, 2009.
[43] 劉育青,結合群體智能與互動網頁技術於多自主行動機器人之研究,中原大學機械工程學系碩士論文,2014。
[7] Q.Zhang,Q.Zhang, “An Improved Ant Colony Algorithm for the Logistics Vehicle Scheduling Problem,” IEEE Second International Symposium onIntelligent Information Technology Application, pp. 55-59, Dec. 2008.
[8] M.Gao,J.Xu, , J.Tian, ” Mobile Robot Global Path Planning Based on Improved Augment Ant Colony Algorithm,”IEEE Second International Conference onGenetic and Evolutionary Computing, pp.273-276, Sept. 2008.
[10] S.Khakmardan, H.Poostchi, M.-R.Akbarzadeh-T, “Solving Traveling Salesman Problem by a hybrid combination of PSO and Extremal Optimization,” IEEE International Joint Conference onNeural Networks (IJCNN), pp. 1501 – 1507, July 31-Aug. 5, 2011.

延伸閱讀