透過您的圖書館登入
IP:3.144.237.3
  • 學位論文

聚對苯二甲酸乙二酯/鎂鋁或鋰鋁層狀雙氫氧化合物奈米複材之新觸媒探討與其結晶性質之研究

Study on the Novol Catalyst, Crystallization and Properties of PET/MgAl or LiAl LDH Nanocomposites

指導教授 : 蔡宗燕

摘要


本研究以聚對苯二甲酸乙二醇酯 (poly (ethylene terephthalate), PET)/鎂鋁與鋰鋁層狀雙氫氧化合物(MgAl and LiAl Layered double Hydroxide)奈米複材之新觸媒探討與其結晶性質之研究。鎂鋁與鋰鋁層狀雙氫氧化合物以有機改質胺基苯磺酸鈉(Sulfanilic acid sodium salt hydrate, SAS)和1,3-苯二甲酸二甲酯-5-磺酸鈉(Dimethyl 5-sulfoisopthalate, DMSI)製備改質型層狀雙氫氧化合物,分別以鍛燒法、水熱法、一步合成法以及離子交換法將層狀雙氫氧化合物表面有機化改質增加其與高分子基材的相容性,利用廣角X光繞射儀(Wide Angle X-ray Diffraction, WAXRD)觀察無機層材之層間距變化,傅立葉轉換紅外線光譜儀(Fourier Transform Infrared, FT-IR)鑑定改質層狀雙氫氧化合物層間之有機與無機的官能基,證明SAS、DMSI的官能基改質於層狀雙氫氧化合物層間。以熱重分析儀(Thermogravimetry Analyzer, TGA)定量分析改質層狀雙氫氧化合物中的改質劑的插層量。 以不同的鎂鋁與鋰鋁層狀雙氫氧化合物與改質劑組合而成的改質型層狀雙氫氧化合物(MgAl LDH100-SAS、MgAl LDH150-SAS、MgAl LDH100-DMSI、LiAl LDH-SAS、LiAl LDH-DMSI)進行原位聚合法製備聚對苯二甲酸乙二醇酯/鎂鋁與鋰鋁層狀雙氫氧化合物奈米複材。以WAXRD及穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察其分散性,可知PET/ MgAl LDH100-SAS及PET/ MgAl LDH150-SAS複材為海型脫層分散帶著部分島型插層分散,PET/ MgAl LDH100-DMSI複材為島型插層型分散,PET/LiAl-SAS複材為島型插層與脫層型分散以及PET/LiAl-DMSI海型插層與脫層型分散;經由結構鑑定分析探討得知無論添加鎂鋁或鋰鋁層狀雙氫氧化物並且利用SAS與DMSI改質添加於PET高分子中,可得到聚合型態良好之PET高分子,並且利用NMR得知添加LDH並不會改變其結構特性。 以不同的鎂鋁與鋰鋁層狀雙氫氧化合物與改質劑組合而成的改質型層狀雙氫氧化合物(MgAl LDH100-SAS、MgAl LDH150-SAS、MgAl LDH100-DMSI、LiAl LDH-SAS、LiAl LDH-DMSI)進行觸媒催化機制探討,觸媒催化特性鑑定結果顯示,LiAl LDH-SAS添加0.1%於PET高分子中表現出最佳反應活性,可由商品料之反應速率常數為72.35 k/[g.(mol. Min)-1] 提升至PET/LiAl LDH-SAS-0.1wt%為986.13 k/[g.(mol. Min)-1] 反應速率提升了13.63倍之多。抗氧化能力特性鑑定結果顯示,MgAl LDH150-SAS添加0.1%於PET高分子中表現出最佳抗氧化能力,可由Pristine-PET之抗氧化能力9.00 K’*10-4/min下降至PET/ MgAl LDH150-SAS-0.1wt%之抗氧化能力0.17 K’*10-4/min。 以不同的鎂鋁與鋰鋁層狀雙氫氧化合物與改質劑組合而成的改質型層狀雙氫氧化合物(MgAl LDH100-SAS、MgAl LDH150-SAS、MgAl LDH100-DMSI、LiAl LDH-SAS、LiAl LDH-DMSI)進行結晶學探討。結晶學特性鑑定結果顯示,經由第一次升降溫、第二次升降溫以及非等溫結晶動力學得知,其結晶速率由快到慢分別為: LiAl LDH-DMSI > MgAl LDH100-DMSI > MgAl LDH100-SAS > LiAl LDH-SAS >MgAl LDH150-SAS。 以不同的鎂鋁與鋰鋁層狀雙氫氧化合物與改質劑組合而成的改質型層狀雙氫氧化合物(MgAl LDH100-SAS、MgAl LDH150-SAS、MgAl LDH100-DMSI、LiAl LDH-SAS、LiAl LDH-DMSI)進行熱性質、機械性質以及阻隔特性探討。MgAl LDH150-SAS添加1.0%於PET高分子中表現出最佳熱裂解溫度(Decomposed temperature, T5d),可由Pristine-PET之熱裂解溫度為383℃提升至PET/MgAl LDH150-SAS-1.0wt%為411℃,熱裂解溫度提升了28℃之多。MgAl LDH150-SAS添加1.0%於PET高分子中表現出最佳機械性質,可由Pristine-PET之儲存模數(Storage modulus)為1790 Mpa提升至PET/MgAl LDH150-SAS-1.0wt%為3687 Mpa,儲存模數增加了2.05倍之多。LiAl LDH-SAS添加1.0%於PET高分子中表現出最佳抗紫外光能力,可由Pristine-PET之穿透度為79.3%下降至PET/LiAl LDH-SAS-1.0wt%為39.3%,穿透度下降了40.0%之多。LiAl LDH-SAS添加1.0%於PET高分子中表現出最佳抗二氧化碳能力,可由Pristine-PET之氣體穿透為3.01下降至PET/LiAl LDH-SAS-1.0wt%為0.36,氣體阻隔能力提升了8.36倍。

並列摘要


Composites of poly (ethylene terephthalate)(PET) / magnesium aluminum and lithium aluminum layered double hydroxide (LDH) compound (MgAl and LiAl Layered double Hydroxide) as a new catalysts discussion its crystalline nature studied to prepared modified LDH. MgAl and LiAl LDH compound modified with an organic Sulfanilic acid sodium salt hydrate(SAS) and Dimethyl 5 –sulfoisopthalate(DMSI) respectively. Using wide angle X- ray diffraction (WAXRD) observed inorganic layer material change in the layer spacing, Fourier transform infrared spectroscopy (FT-IR) identification of a modified layer shaped double hydroxide compound layer between the organic and inorganic functional groups, that SAS, DMSI functional group modified layered double hydroxide in the interlayer. Quantitative analysis of modified LDH compound of intercalation is characterized by thermogravimetry analzer(TGA). With different magnesium aluminum and lithium aluminum compound modifier combination with a modified LDH(MgAl LDH100-SAS, MgAl LDH150-SAS, MgAl LDH100-DMSI, LiAl LDH- SAS, LiAl LDH-DMSI) in situ polymerization poly (ethylene terephthalate) / magnesium aluminum and lithium aluminum compound nanocomposites. In WAXRD and transmission electron microscopy(TEM) to observe the dispersion of known PET / MgAl LDH100-SAS and PET / MgAl LDH150-SAS the polymer matrix, indicating the co-existence of island-type exfoliated and intercalated morphologies, PET / MgAl LDH100-DMSI island type composite material is intercalated dispersed , PET / LiAl-SAS complex intercalation material for the island and exfoliated dispersion and PET / LiAl-DMSI sea intercalation and exfoliation type dispersion; analysis and discussion by SAS and DMSI modified LiAl/MgAl LDH-PET polymer obtained good PET polymerization type polymer. For catalysis mechanism , catalysis characterization results , shows the LiAl LDH-SAS added 0.1% for PET polymer showed the best reactivity, then commodity material, the commodity material the reaction rate constant 72.35 k / [g. (mol. Min) -1] upgraded PET / LiAl LDH-SAS-0.1wt% to 986.13 k / [g. (mol. Min) -1], to enhance the reaction rate of 13.63 times. Antioxidant capacity characterization results , shows MgAl LDH150-SAS added 0.1% for PET polymer showed the best antioxidant capacity, compare to pristine-PET antioxidant capacity of 9.00 K '* 10-4/min dropped to PET / MgAl LDH150-SAS-0.1wt% of the antioxidant capacity of 0.17 K '* 10-4/min. Crystallographic characterization of modified LDH showe that heating and cooling through the first , second heating and cooling as well as non-isothermal crystallization kinetics learned from fast to slow its rate of crystallization , respectively : LiAl LDH-DMSI> MgAl LDH100-DMSI> MgAl LDH100-SAS> LiAl LDH-SAS> MgAl LDH150-SAS. The thermal, mechanical and barrier properties of modified LDH, results shows the MgAl LDH150-SAS 1.0% in the PET polymer the best thermal decomposition temperature (Decomposed temperature, T5d), then pristine-PET in the decomposed temperature of 383 ℃ upgraded to PET / MgAl LDH150-SAS-1.0wt% of 411 ℃, thermal decomposition temperature improves as much as 28 ℃ . MgAl LDH150-SAS 1.0% in the PET polymer showed the best mechanical properties , then pristine-PET the storage modulus are 3687 and 1790 respectively, storage modulus increased by 2.05 times. LiAl LDH-SAS 1.0% in the PET polymer showed the best anti- UV capability, by pristine-PET degree of penetration was 79.3 % down to PET / LiAl LDH-SAS-1.0wt% to 39.3% penetration decreased by 40.0 percent. LiAl LDH-SAS 1.0% in the PET polymer showed the best resistance to carbon dioxide capacity of the gas by pristine-PET penetration decreased to 3.01 PET / LiAl LDH-SAS-1.0wt% was 0.36, improved gas barrier capability 8.36 times.

參考文獻


[1] C. Bonnebat, G. Roullet, A. J. de Vries, Biaxially oriented poly(ethylene terephthalate) bottles: effects of resin molecular weight on parison stretching behavior, Polymer Engineer Science, 1981, 21, 189.
[3] J. Y. Park, S. Y. Hwang, W. J. Yoon, E. S. Yoo, S. S. Im, Compatibility and physical properties of poly (lactic acid)/poly (ethylene terephthalate glycol) blends, Macromolecular, 2012, 20, 1300.
[4] K. Nakata, F. Nakamura, Y. Ohkoshi, Y. Gotoh, M. Nagura, A. Hamano, S. Takada, T . Kikutani, High-strength PET fibers produced by conjugated melt spinning and laser drawing, International Polymer Processing, 2012, 27, 386.
[5] A. Z. I. Pereira, M. C. Delpech, Thermal and Mechanical evaluation of the stability of recycled poly (ethylene terephthalate) applied as sand control agent in petroleum wells. Polymer Degradation and Stability, 2012, 97, 1158.
[6] Khoramnejadian, Shahrzad, Enhance mechanical and thermal properties of recycled polyethylene terephtpalate (PET) from used bottle. Advances in Environmental Biology, 2011, 5, 3826.

被引用紀錄


黃哲榆(2016)。以溶膠-凝膠法改質天然黏土製備聚丙烯奈米複材之微混練加工與性質探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600880
吳悌嘉(2015)。具難燃機能聚甲基丙烯酸甲酯/改質型黏土奈米複材之製備與性質研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500778
廖君儒(2014)。以微混練製程開發不同奈米無機層材/聚對苯二甲酸乙二酯奈米複材之製備與性質探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400661

延伸閱讀