透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

發展跨領域知識整合模型-以食物諮詢為例

An Integration Model of Multiple Knowledge Domains – A Case Study of Dietary Consultation

指導教授 : 戚玉樑

摘要


隨著社會競爭加劇,知識管理越來越受到重視,專精於特定領域的知識研究已經無法滿足需求,因此跨領域的知識研究越顯重要。疾病與飲食分別屬於兩個獨立的領域知識,本研究嘗試建立一個以知識本體為基礎之跨領域知識整合模型,藉由整合領域專家知識,分析概念間的屬性關係,連接兩種不同領域知識,來建立本體知識模型,使疾病與飲食的關係得以系統化。相較於傳統以資料庫為基礎的諮詢系統,可以擁有更高的擴充性及知識再利用性,隨著食物資料樣本數的增加,可使推論系統能更精準的提供問題解答。最後利用Protégé為網路本體語言的編輯工具,建立完整的概念、屬性及描述邏輯之概念模型,讓使用者能針對特定疾病進行食物諮詢。

關鍵字

知識本體 SWRL 疾病飲食

並列摘要


With the social competition, knowledge management has become more and more important, the knowledge research of single domain is not enough anymore, so that the knowledge research of multiple domain get more important. Disease and dietary belong to two separate knowledge domains, this study attempts to establish an integration model of multiple knowledge domains by ontology. After integrating the domain expert knowledge, analyze the properties relationships between concepts, and connect two different domains knowledge to build ontology knowledge, make sure the relationship between the disease and diet can be systematized. Compare to the traditional consultation by database based, there are with higher extensibility and knowledge reusable in knowledgebase. With the increase in the amount of food information to make inference system still can provide more precise answers. Finally this research use Protégé to create a complete concept, properties and description logic of the conceptual model, so that users can consult in accordance with their own needs.

並列關鍵字

Disease Dietary SWRL Ontology

參考文獻


林嘉伯. (1988). 藥物和營養素間之相互作用. [Drug and Nutrient Interaction]. 藥物食品檢驗局調查研究年報(6號), 1-9.
王美純, 廖珮伶, 廖炎智, 林四海, & 陳政友. (2008). 飲食行爲與罹患攝護腺癌之相關性探討-以某醫學中心攝護腺癌患者爲例之配對病例對照研究. [Dietary Behavior Risk and Prostate Cancer-A Matched case-control Study at an Academic Teaching Hospital]. 健康促進暨衛生教育雜誌(28), 65-81.
Bhupathiraju, Shilpa N., & Tucker, Katherine L. (2011). Coronary heart disease prevention: Nutrients, foods, and dietary patterns. Clinica Chimica Acta, 412(17–18), 1493-1514. doi: http://dx.doi.org/10.1016/j.cca.2011.04.038
Buchanan, Bruce G., & Duda, Richard O. (1983). Principles of rule-based expert systems. Advances in computers, 22, 163-216.
Chen, TS, Lin, CC, Chiu, YH, & Chen, RC. (2006). Combined density-and constraint-based algorithm for clustering. Paper presented at the Proceedings of 2006 International Conference on Intelligent Systems and Knowledge Engineering.

延伸閱讀