隨著生醫科技以及影像處理的發展,必須藉由分析大量的顯微影像才能使人們了解細胞中特定生化過程中互動的機制,例如蛋白質的分布、粒線體的型態變化、細胞的凋零、突起增生等現象。本研究結合自動化控制顯微鏡載物台以及自動對焦技術,幫助需要以顯微鏡取得大量研究資料的實驗,可以大量且長時間的取得清晰影像資訊。 本系統使用倒立式螢光顯微鏡,適合觀察培養皿內的細胞以及螢光影像,搭配現成顯微平台系統,利用步進馬達以及滾珠輪桿機構之設計,以電腦控制搭配微處理器達到自動化控制顯微平台。取得CCD Camera的即時影像利用Tenengrad 演算法判斷影像清晰程度並使用二元搜尋法尋得清晰對焦點。 本研究已完成自動對焦,以及96 well多孔盤自動對焦掃描,以及Z軸連拍等功能,並測試多種細胞影像,例如一般明視野細胞影像以及螢光影像。以百合花藥切片、人體皮膚癌細胞以及人體皮膚癌細胞螢光染色等樣本測試皆於7秒內完成自動對焦。
With the development of biomedical science and image process, the analysis of vast micrographic images became a fundamental tool to explore mechanisms of some specific molecular process in cells. These mechanisms including the localization of protein, morphological variation of mitochondria, apoptosis, and cell hyperplasia. This study combines 3D stage control hardware and autofocus algorithm, to configure experimental workflow that can automatically acquire clear and a large number of microscopic images for later bioimage processing applications This system uses inverted fluorescent microscope to obtain fluorescence cell image in the petri dish and, collocate a customer-made microscopic stage. The automated microscopic stage is set up with stepper motors and ballscrew structure, and controlled by a microprocessor control unit. The Tenengrad sharpness function is used to identify the clearness of the images acquired by CCD camera. Via the binary search method and Z-axis control, the best focus point can be located in real time. The feature functions of the system including auto focusing, auto scanning for 96 multiwell, and continuous image capture on Z axis. All functions are tested by different kinds of cell image, such as bright field images or fluorescent images. The performance test with lily anthers slices, cancer cell of human skin, fluorescent staining of human skin cancer cell specimens shown the system can locate the focus point within 7 seconds.