透過您的圖書館登入
IP:3.129.23.30
  • 學位論文

動態環境對人員視覺與生理反應之影響

The Effect of Motion on Human Visual and Physiological Responses

指導教授 : 林久翔
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 振動環境下容易引起人員動暈、疲勞甚至中斷作業等績效問題。過去已有很多研究在探討人員在靜態環境下的視覺績效問題,但極少有研究討論在動態環境下對人員全視域視覺反應時間與生理反應之實際評估。本研究以史都華動感平台結合環境模擬艙,產生動態模式包括:起伏運動(Heave)、俯仰運動(Pitch)、翻滾運動(Roll),頻率模式則包括三種不同模式:靜態(0 Hz)、0.3 Hz 及0.6 Hz。主要探討人員在不同動態模式、不同頻率模式下,對其全視域視覺反應時間與生理反應影響程度。 本研究以自製直徑為80cm之壓克力半球殼作為視域儀主體,將刺激亮點以72顆綠色SMD LED(light-emitting diode)依序排列在半球殼0°、45°90°、135°、180°、225°、270°、315°八條放射狀的子午線上,每一子午線自球殼中心算起以每10°放置ㄧ顆SMD LED至90°止計有9顆刺激位置(Stimulus Location),以作為進行全視反應時間評估工具。綠色SMD LED藉由自行設計開發之Visual Basic軟體程式驅動,透過PCI8255作為與電腦做類比訊號與數位訊號訊號溝通介面,刺激亮點自八條放射狀的子午線上刺激位置隨機亮起,亮點出現的間隔時間設定在3-10sec,當受測者在亮點出現3sec內未作出反應,電腦記錄此反應時間為3000msec。 本研究採用3×3的實驗設計方法,受測者共有男性11位女性11位共22位;實驗的自變數為動態模式及頻率模式二因子,應變數為全視域視覺反應時間、皮膚電阻(Galvanic Skin Response, GSR)、平均心搏率(Average Heart Rate, AHR)、心率變異性(Heart Rate Variability, HRV)及NASA-TLX主觀評量等。 在動態環境下全視域反應時間的研究結果顯示,頻率模式在0.3Hz動態模式為翻滾運動(Roll)時,全視域的反應時間最差;頻率模式在0.6Hz動態模式為起伏運動(Heave)時,全視域的反應時間最差。整體運動模式下與靜態環境作全視域的反應時間做比較,全視域的反應時間有變慢的趨勢。比較全視域中左、右二側視域反應時間,研究結果顯示右側視域優於左側視域。比較全視域中上、下二端的全視域反應時間,研究結果顯示下端視域優於上端視域。 在動態環境下生理反應的研究結果顯示,皮膚電阻(GSR)生理指標在動態模式和頻率模式在統計上達顯著水準(P<0.05),其中以在0.6Hz翻滾運動(Roll)時,受測者有生理負荷較重的趨勢。平均心搏率(AHR) 生理指標,僅有頻率模式在統計上達顯著水準(P<0.05),結果顯示在0.6Hz時受測者有生理負荷較重的趨勢。本研究心率變異性(HRV)生理指標在統計上都未達顯著水準(P<0.05),但LF(NU)、HF(NU)及LH/HF三項生理指標在0.6Hz俯仰運動(Pitch)時,受測者生理指標呈現負荷較重的趨勢。動態模式生理反應呈現以旋轉運動(rotational motion)比位移運動(translational motion)容易使受測者產生壓力負荷感,頻率模式則以頻率愈高產生壓力負荷感愈重。 本研究貢獻除提供介面設計工程師,在動態環境人機互動介面設計上參考運用,提高顯示介面的可使用性(Usability)外,更有助於釐清運動模式與頻率模式對人員生理負荷之影響程度。

並列摘要


ABSTRACT Motion environments pose many problems to human performances (e.g. motion sickness, motion induces interruption and motion induces fatigue). There exists many literatures to investigate the issues of visual performances, but few focus on the effect on full visual field signal detection task and physiological responses on motion environments. The purpose of this study compared the effects of three motion types (heave, pitch and roll) and three frequency types (the static, 0.3Hz, 0.6Hz) on the full visual field signal detecting sensitivity (reaction times) and physiological responses. The stimulus configuration of the signal detection permeter consisted of a hemispheric array of 72 units of Surface Mount Display Light-Emitting Diodes (SMD LEDs) arrayed along eight radial axes dispersed about a subject’s central line of sight. The eight curved ribs of the structure were spaced at 45° intervals to form an 80 cm diameter black acrylic hemisphere. The SMD LEDs were positioned on each of the eight ribs at 10°、20°、30°、40°、50°、60°、70°、80° and 90° angular displacement from the centre of the hemisphere. A test program was installed on a personal computer controlled signal presentation and recorded each subject’s response times. The time intervals between occurrences of were randomized at 3-10 sec so that subjects could not anticipate the time of onset for any stimulus. An undetected stimulus was considered missed after 3000msec and given a response time score of that value. Twenty two subject (11 males, 11 females) with the mean age of 35.68±15.6 years participate for this study. A randomized block design was utilized with three environments (heave, roll and pitch), three frequency levels (static, 0.3 Hz and 0.6Hz), with the subject as the block. The dependent variables were full visual field reaction time (RT), Average Heart Rate (AHR), Galvanic Skin Response (GSR), Heart Rate Variability(HRV) and subjective rating (NASA-TLX). Previous studies reported that right visual field faster than in the left visual field and lower visual field faster than in the upper visual field on static condition. Compared with static and motions, the results showed that no influence of signal detecting performance, as usual on right and lower visual field faster than in the left visual field and upper visual field. Both increase RT under the roll motion that frequency at 0.3 Hz and heave motion that frequency at 0.6 Hz types especially. The rotational motion (especially, roll motion) and higher frequency at 0.6Hz were significant effect on physiological index. Base on these findings, the designers can be used to optimize facilities and console when designing maritime vessels.

參考文獻


Ando, S., Kokubu, M., Kida, N. and Oda, S. (2002), Attention can be oriented to intermediate locations within the large area of the visual field, Perceptual and Motor Skills, 95, 806-812.
Benson, A. J. and Barnes, G. R. (1978), Vision during angular oscillation: the dynamic interaction of visual and vestibular mechanisms, Aviation, Space and Environmental Medicine, 49(1) Section Ⅱ 340-345.
Brown, L. E., Halpert, B. A. and Goodale, M. A. (2005), Peripheral vision for perception and action, Experimental Brain Research, 165, 97-106.
Burg, A. (1968) Lateral visual field as related to age and sex, Journal of Applied Psychology, 52, 10-15
Caretti, D. M. (1999) Signal detection capability during uninterrupted full face-piece respirator wear, Ergonomics, 42, 376-384.

被引用紀錄


李學倬(2016)。動態環境對人員辨識績效之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600491
張廷新(2015)。多目標海象情境對人員辨識績效之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500083
巫昇餘(2013)。3D虛擬與傳統教育訓練方式對人員心智負荷與績效影響之比較研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300193
黃清財(2009)。動態環境下視覺搜尋與心智負荷之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200901338

延伸閱讀