透過您的圖書館登入
IP:3.142.119.111
  • 學位論文

二氧化鈦顆粒在紫外光照射下結合薄膜處理進行染料(RB-5)降解之懸浮條件最佳化

Optimizing Operational Conditions To Reduce TiO2 Deposition on The Membrane surface and Get Good Suspension

摘要


近年,使用薄膜過濾程序來分離光催化反應槽中的出流水與二氧化鈦顆粒已被廣泛的研究發展,許多研究指出光催化反應槽之操作參數將會直接的影響其光解效率與薄膜固液分離效果。 在反應槽懸浮溶液中,介達電位(Zeta potential)扮演著一項相當重要的指標,直接的影響到二氧化鈦顆粒之間的排斥力作用大小與擴散作用的穩定性,此外,二氧化鈦溶於水中時,具有團聚之特性,團聚之後的粒徑分佈、表面帶電性與薄膜帶電性,受其槽體中之酸鹼值(pH)所影響,不僅如此對於到薄膜與二氧化鈦之間的相互作用更是有直接的關係,因此,薄膜特性(親疏水性、孔洞大小、帶電性)、操作通量與二氧化鈦在不同pH之特性(粒徑大小、帶電性)對於薄膜產生二氧化鈦積垢物,有著密不可分的關係。 本研究中,所控制的操作參數為二氧化鈦添加量(DegussaP25 TiO2 0~1.0g/L)、不同光照運轉時間、操作通量(8、12、16mL/min)、槽體中pH( 5、 7、 9)與薄膜種類(PVDF、PAN、PTFE),反覆試驗獲得二氧化鈦最佳化懸浮態之操作條件,以最佳化條件降解偶氮染料(RB-5),觀察其降解效果。

並列摘要


Recently, the membrane filtration has been introduced as an effective technique for separating TiO2 photocatalyst from treated water in a conventional slurry-type photoreactor. Thus, the different operating conditions of MPR will simultaneously affect the photocatalytic degradation efficiency as well as the separation efficiency of the membrane. For a suspension system, zeta-potential is an important index which reflects the intensity of repulsive-force among particles and the stability of dispersion. The TiO2 particles form agglomerates when dissolved in water. Furthermore, its size distribution, charge and membranes surface-charge are affected simultaneously by the solution pH, and this may also affect the interaction between particle and membrane surface. Therefore, the membranes' properties (such as hydrophobicity, pore size, charge), its operating flux and TiO2 properties (such as particle size distribution and charge) at different pH will greatly affect the membrane fouling. In this study, the effects of MPR operating conditions such as TiO2 dosage(DegussaP25 TiO2 0~1.0g/L)、flow rate(at 8, 12, 16mL/min)、 solution pH(at 5, 7, 9) and membrane hydrophobicity(PVDF, PAN, PTFE) on separation characteristics and membrane fouling caused by TiO2 deposition were investigated in detail.

參考文獻


1. Brindle, K. and Stephenson, T. ,“The application of membrane biological reactors for the treatment of wastewaters,” Biotechnol. Bioeng. 49 601-610(1996).
2. Chang, S., P. Le Clech, B. Jefferson and S. Judd,Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. –ASCE, 128, 1018–1029 (2002).
4. Chin ,S.S,Lim,T.M.,Chiang,K.,Fane,A.G.,Hybird Low-pressure Submerged Membrane Photoreactor For The Removal of Bisphenol,Desalination,202,page253-261(2005).
5. Dagan, G., Tomkiewicz, M. J. Phys. Chem., 97, Pages 12651 (1993).
6. Gültekin, I. and N.H. Ince. ,Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: Effect of α-substituents Ultrasonics Sonochemistry, Volume 13(3), pages 208-214(2006).

延伸閱讀