透過您的圖書館登入
IP:13.59.36.203
  • 學位論文

以穿孔式陽極氧化鋁過濾外泌體之研究

Study on filtration of exosomes using perforated anodic aluminum oxide

指導教授 : 張耀仁

摘要


本研究設計了一種新型的微流體過濾系統,透過陽極氧化鋁的高親水性與孔徑可控制性,再結合微流道,製作出外泌體過濾系統。利用電壓與孔徑的正比關係,製作出不同孔徑的陽極氧化鋁過濾膜,並以胎牛血清為過濾原液,進行外泌體濾出研究。 使用接觸角量測儀與場發式電子顯微鏡檢測陽極氧化鋁之親水性與表面結構分析,並透過膠體電泳得到外泌體過濾後之保存度,吸收光微量盤分光光譜儀得到雜蛋白濾除率,交叉比對後,比較陽極氧化鋁於不同孔徑下,其過濾系統效率。利用可見光/紫外光光譜儀與NanoSight粒徑分析儀,再一次針對效率較高的孔徑進行分析外泌體保存度與雜蛋白濾除率。 針對不同孔徑之穿孔式陽極氧化鋁過濾膜做比較,進行外泌體濃度、粒徑、蛋白質濾除量等分析,結果證實以上層孔徑80 nm其過濾效能最好。故此過濾系統能有效濾除血清中雜蛋白,並且保留純淨的外泌體,故此本研究所設計的陽極氧化鋁微流體過濾系統,是適合進行外泌體過濾的系統。

並列摘要


This study presents a novel microfluidic system to filter exosomes by using anodic aluminum oxide (AAO) membrane. The pore size of AAO membrane can be regulated by the anodic voltage and the widen process. Thus, a microfludic filtration chip comprises two different pore sizes of AAO membranes. In this study, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome isolation. The characteristics of hydrophilicity and surface structure of anodic aluminum oxide were measured by Contact Angle and Field Emission Scanning Electron Microscope (FE-SEM), respectively. The preservation rate of exosomes was obtained by Colloid Electrophoresis and UV/VIS Spectophotometer. In addition, the removal rate of protein was measured by Absorbance Plate Reader and Particle Size Analyzer. After comparing the different pore sizes of AAO membranes, the experimental results showed that the AAO membrane with 80 nm in pore size had the best filtration efficiency. Moreover, this filtration system can effectively remove serum protein, and retain the exosomes. This proposed microfludic filtration chip with AAO membranes is a suitable system for exosome isolation.

參考文獻


[4] X. Zhang, X. Yuan, H. Shi, L. Wu, H. Qian, and W. Xu, "Exosomes in cancer: small particle, big player," J Hematol Oncol, vol. 8, pp. 83, 2015.
[6] T. R. Lunavat, S. C. Jang, L. Nilsson, H. T. Park, G. Repiska, C. Lassera, J. A. Nilsson, Y. S. Gho, and Jan Lotvall, “RNAi delivery by exosome-mimetic nanovesicles e Implications for targeting c-Myc in cancer”, Biomaterials, vol.102, pp.231-238, 2016.
[8] S. A. Kooijmans, R. M. Schiffelers, N. Zarovni, and R. Vago, "Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment," Pharmacol Res, vol. 111, pp. 487-500, 2016.
[9] Y. H. Soung1, T. Nguyen, H. Cao, J. Lee, and J. Chung, “Emerging roles of exosomes in cancer invasion and metastasis”, BMB Reports, Review, vol.49(1), pp.18-25, 2016.
[10] B. S. Chia, Y. P. Low, Q. Wang, P. Li, and Z. Gao, "Advances in exosome quantification techniques," TrAC Trends in Analytical Chemistry, vol. 86, pp. 93-106, 2017.

延伸閱讀