透過您的圖書館登入
IP:18.119.111.126
  • 學位論文

利用碳摻雜氫氧化錫酸鋅薄膜光催化降解阿莫西林之研究

Synthesis of carbon-doped ZnSn(OH)6 nanocomposite membrane and application for photocatalytic Amoxicillin degradation

指導教授 : 游勝傑 王雅玢

摘要


台灣是世界著名的可用水缺水國家,平均每人可用水量僅僅是世界平均每人可用水量的六分之一,因此污水回收技術是台灣未來發展重點。目前,台灣抗生素污染水體嚴重,民眾經常使用的抗生素在河川水體中的濃度甚至超過歐盟標準的一百倍以上,現行的污水處理程序很難將其去除,這極大的減小了台灣的可回收用水量,抗生素在水環境中的累積還會對生態系統的穩定造成非常大的威脅以及超級細菌的誕生。 本研究採用光催化技術和薄膜模組結合的方法,首先通過調控不同反應時間、pH、碳摻雜比例、反應溫度製備新型高效具有可見光活性的碳摻雜氫氧化錫酸鋅光催化劑,與市面上市售P25進行比較其降解效率;利用低溫電漿改質薄膜,將薄膜表面之疏水性轉變為親水性,藉此提高光催化劑之水分子利用效率,再利用浸漬法將碳摻雜氫氧化錫酸鋅光催化劑均勻塗覆於薄膜上,達到減少薄膜阻塞與污染物附著之目標。 實驗結果顯示,不同反應時間影響奈米晶體生長,不同NaOH的添加量會影響其形狀,碳摻雜使催化劑具有可見光活性,同時不同碳摻雜含量以及反應溫度將影響最終的光催化效率;通過特性分析和光催化效率測試,在160℃下製備出的1%碳摻雜立方體氫氧化錫酸鋅擁有高達89.5%甲基藍降解效率,與市售P25進行阿莫西林降解比較,自製光催化劑以62.0%礦化率贏過市售P25;將篩選好的光催化劑塗覆在通過低溫電漿改質後的親水性薄膜上进行大水量光催化测试。在6小時的測試中,阿莫西林礦化率可達43%並且在連續5次重複實驗後光催化模組仍然對阿莫西林有一定的降解效率,阻塞實驗中證實可減少33%的薄膜阻塞,並且可以維持一定減緩阻塞能力。

並列摘要


Taiwan is one of a world-famous water-deficient country. The average available water per person is only one-sixth of the world's per capita water consumption. Therefore, water recycling technology is the focus of Taiwan's future development. At present, the antibiotics water pollution in Taiwan is very serious. The concentration of antibiotics that Taiwan people commonly used in rivers are even more than one hundred times higher than the EU standards. These drugs are usually chemically stable and can hardly be treated by the current sewage treatment procedures. The substances in rivers will greatly reduce the amount of available water. Furthermore, the accumulation of antibiotics in the water environment poses a great threat to the stability of the ecosystem. In this study, photocatalytic technology and membrane module were combined used to prepare a new high-efficiency visible-light responded carbon-doped ZnSn(OH)6 nanocomposite by adjusting different reaction time, pH, carbon doping ratio and reaction temperature. The photocatalyst is compared with the commercially available P25 for degradation efficiency; the low temperature plasma modified membrane is used to convert the hydrophobicity of the surface of the membrane into hydrophilicity, thereby improving the water molecule utilization efficiency of the photocatalyst. Then impregnation method is used to carbon-doped ZnSn(OH)6 photocatalyst evenly coated on membrane to avoid the membrane blocking and contaminants adhesion. The experimental results show that the different reaction time will affect the growth of nanocrystals. The addition content of NaOH will affect the micro morphology. The carbon doping makes the catalyst have visible light activity. Also, the carbon doping content and reaction temperature will affects the final photocatalytic activity. Through a series of characterization analysis and photocatalytic activity tests, the 1% carbon-doped ZnSn(OH)6 prepared at 160 °C was proved to be the most optimal catalyst with 89.5% degradation efficiency of methyl blue. Our self-made photocatalyst present 62.0% mineralization rate in amoxicillin degradation, which further win over commercially available P25. The selected photocatalyst was coated on a hydrophilic membrane modified by low temperature plasma to perform large-volume photocatalytic test. In the 6 hour photocatalytic test, the amoxicillin mineralization rate reached to 43%. After 5 times repeated cycle experiments,

參考文獻


1. Achilli, A., T. Y. Cath, E. A. Marchand and A. E. Childress (2009). "The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes." Desalination 239(1): 10-21.
2. Alias, S. S., Z. Harun and I. S. A. Latif (2018). "Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes." Journal of Materials Science 53(16): 11534-11552.
3. Andreozzi, R., V. Caprio, A. Insola and R. Marotta (1999). "Advanced oxidation processes (AOP) for water purification and recovery." Catalysis Today 53(1): 51-59.
4. Ayodele, O. B., J. K. Lim and B. H. Hameed (2012). "Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin." Applied Catalysis a-General 413: 301-309.
5. Baig, U., A. Matin, M. A. Gondal and S. M. Zubair (2019). "Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants." Journal of Cleaner Production 208: 904-915.

延伸閱讀