透過您的圖書館登入
IP:3.22.208.84
  • 學位論文

壓電致動無閥門式微幫浦之設計

Design of piezoelectric valve-less micropumps

指導教授 : 張耀仁

摘要


微流體系統基本上是將微米等級之微流道、微幫浦、微閥門、微混合器、微感測器等常見流體控制元件整合於一晶片上 ,針對微小體積流體來作傳輸、循環、分離、混合、程序控制,可用於生化分析、醫學檢測、能源工程、微冷卻等。微幫浦是微流體系統中一個關鍵的元件,其功能為各種流體的供給、傳輸、驅動。在相關研究中大部分的微幫浦輸出流量範圍最小約是數個ul/min,最大到數個ml/min左右。 本研究利用SU-8厚膜光阻作為微幫浦流道結構材料,紫外光硬化樹脂為薄膜材料,並選用壓電蜂鳴片為致動器,在非無塵室環境中製作出單一腔體與三腔體串聯無閥式壓電微幫浦,並開發出新式薄膜接合技術,使光硬化樹脂在經過紫外光照射硬化後直接與SU-8流道結構接合,可迅速且有效的將流道封閉,與傳統式壓電微幫浦之矽或玻璃薄膜所需的蝕刻、陽極接合製程相比簡易許多。微幫浦製程中只需一道光罩與簡易曝光機、旋塗機,和其他的壓電無閥門式微幫浦製程相較之下可大幅減低製程複雜度與成本。單一腔體幫浦的設計有兩種不同幾何尺寸,在驅動電壓130 V,驅動頻率分別為180 Hz、160 Hz時,可得最大輸出流量分別為300 ul/min與240 ul/min,最大驅動背壓分別為46 mmH2O與56 mmH2O;三腔體串聯幫浦在驅動電壓120 V、驅動頻率為70 Hz時,可得最大輸出流量92 ul/min,最大驅動背壓為18 mmH2O。由於製作出之光硬化樹脂薄膜厚度小於40 um時,在進行PDMS載體剝離時容易破裂,因此限制了流道深度的進一步減低,幫浦壓縮比尚未達到自我抽取功能所需之門檻值,所設計出的三種微幫浦仍不具自我抽取功能。 關鍵字:壓電無閥門式微幫浦, SU-8厚膜光阻, 紫外光硬化樹脂, 壓電蜂鳴片, 自我抽取功能

並列摘要


A microfluidic system basically integrates several kinds of fluidic control components, such as micro-channels, micropumps, microvalves, micro-mixers, and sensors into a small chip. It is usually designed to perform specific fluid control functions like transmitting, circulation, separation, mixing, and process control, and can be use for chemical analysis, diseases detection, energy engineering, and micro cooling systems. Micropump is one of the critical devices in the microfludic system, and is the source of driving power with exact volumetric flowrate (ul/min~ml/min in general). In this study, two types of piezoelectric valve-less micropumps are presented: the single pump chamber and the three series-connected pump chambers. Those were fabricated by SU-8 flow channel structure on the silicon wafer, UV curable resin diaphragm, and piezo buzzer actuators. A novel diaphragm bonding technique is also presented, which is much easier than diaphragm bonding process of traditional piezoelectric micropumps. UV curable resin and the SU-8 flow channel structure can bond directly to enclose the flow channel after the UV exposure. During the fabrication process, only one mask, a simple exposure equipment, and a spin coater were used, and the fabrication process was proceeding in atmospheric environment (non-cleanroom). Thus, the cost and the complexity of the fabrication process can be reduced. For the single-chamber type, there are two geometric sizes of the pump fabricated, and the maximum volumetric flowrate are 300 ul/min and 240 ul/min, respectively; the maximum pump pressure are 46 mmH2O and 56 mmH2O, respectively, at the excitation voltage of 130V, and the excitation frequency of 180 Hz, 160 Hz, respectively. On the other hand, for the three-chamber type, the maximum volumetric flowrate of the pump is 92 ul/min, and the maximum pump pressure is 18 mmH2O, at the excitation voltage of 120V, and the excitation frequency of 70 Hz. Because the thickness of the UV curable resin diaphragm cannot be less than 40 um, or it will be ruptured when proceeding PDMS stripping. Therefore, the depth of the flow channel cannot be further decreased and the compression ratios of the pumps are still less than the threshold that reaching self-priming. The three types of the pumps in this study still cannot be self-priming. Keywords: piezoelectric valve-less micropumps , SU-8 , UV curable resin , piezo buzzer , self-priming

參考文獻


[21] 曾士恭,“紫外光可硬化型聚胺酯壓克力樹脂之研究,” 國立臺灣大學化學工程研究所碩士論文,2004年。
[1] N. T. Nguyen, X. Huang, and T. K. Chuan, “MEMS-micropumps A review,” Journal of Fluids Engineering, Transactions of the ASME, v 124, n 2, 2002, p 384-392
[2] P. Woias, ” Micropumps—past, progress and future prospects,” Sensors and Actuators, B: Chemical, v 105, n 1, Feb 14, 2005, p 28-38
[4] R. Linnemmann, P. Woias, C. D. Senfft, and J. A. Ditterich, ” Self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, p 532-537
[5] R. Zengerle, A. Richter, and H. Sandmaier, “A micro membrane pump with electrostatic actuation,” Proc IEEE Micro Electro Mech Syst Workshop, 1992, p 19-24

被引用紀錄


鍾昀衞(2012)。以新型製程製作微型電磁驅動之微幫浦〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201101120
Wang, J. H. (2010). 以微機電製程製作主動式微幫浦過濾晶片 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu201000825

延伸閱讀