透過您的圖書館登入
IP:18.117.158.47
  • 學位論文

以新型製程製作微型電磁驅動之微幫浦

A Novel Fabrication Process for Micropump with Electromagnetic Actuation

指導教授 : 張耀仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微流體實驗室晶片提供了一個可進行化學及生化分析的微小平台,具有許多優點,如分析時間快、試劑消耗小及可減少廢棄物的產生,此外它有能整合於其它系統中。微流體系統基本上是將微米等級之微流道、微幫浦、微閥門、微混合器、微感測器等常見流體控制元件整合於一晶片上。微幫浦是微流體系統中一個關鍵的元件,其功能為各種流體的供給、傳輸與驅動。在相關研究中大部分的微幫浦輸出流量範圍最小約是數個μl/min ,最大到數個ml/min 左右。 本研究在非無塵室的環境中製作電磁無閥門式微幫浦。使用PCB作為微線圈主要的基材,PDMS作為微流道主要的結構,此製作過程中,只需一簡易曝光機(UV exposure machine)、旋塗機(Spin coater)、烘箱(Oven)即可完成微幫浦之製作,大幅地減少了製作門檻及製作成本。本研究設計三種微線圈尺寸每種型式製作五片晶片實驗,來取得平均值。微幫浦的最大流量、背壓分別為:線圈12圈在驅動電流500mA、驅動頻率5Hz時,最大流量470μl/min、最大驅動背壓4.3kPa;線圈10圈在驅動電流500mA、驅動頻率5Hz時,最大流量356μl/min、最大驅動背壓3.4kPa;線圈8圈在驅動電流500mA、驅動頻率5Hz時,最大流量215μl/min、最大驅動背壓2.8kPa。本電磁致動微幫浦可應用於生物醫學領域,並能與其他微流體元件作結合成為一完整之微流體系統。

並列摘要


The microfluidic chips provide a platform for conducting chemical and biochemical analyses in a miniaturized format. They have many advantages, such as fast analysis time, small reagent consumption, and less waste product. Moreover, it can be integrated into other systems for further analyses. A microfluidic system basically contains several kinds of fluidic components, including micro-channels, micropumps, microvalves, micro-mixers, and sensors into a small chip. Micropump is one of the critical devices in the microfluidic system to transport and manipulate fluid with exact volumetric flowrate (μl/min ~ ml/min in general). This study presents a novel valve-less micropump chip with electromagnetic actuation. It is manufactured under the non-clearroom environment, using printed circuit board (PC board) as the substrate of micro-coil, PDMS as the structure of the micropump. Simple fabrication process, requiring only UV exposure machine, spin coater, and oven, can reduce the manufacturing cost. In this study, three different coil dimensions were designed. For obtaining the statistical experimental results, five micropump chips per design were prepared for repetitive experiments. For the pump of coil 12 type, the maximum volumetric flowrate reaches 470 μl/min, and maximum pump pressure is 4.3 kPa, under the excitation current of 500mA and the frequency of 5 Hz. For the pump of coil 10 type, the maximum volumetric flowrate is 356 μl/min, and maximum pump pressure is 3.4 kPa, at the excitation current of 500 mA and the excitation frequency of 5 Hz. Besides, for the pump of coil 8 type, the maximum volumetric flowrate is 215 μl/min, and maximum pump pressure is 2.8 kPa, at the excitation current of 500 mA and the excitation frequency of 5 Hz. This proposed valve-less micropump can be integrated into a microfluidic system and is suitable for the application of biochemistry researches.

參考文獻


[3] 林瑾余, “壓電致動無閥門式微幫浦之設計,” 中原大學機械工程研究所碩士論文,2007年
[2] N. T. Nguyen, X. Huang, and T. K. Chuan, “MEMS-micropumps A
[4] P. Woias, ” Micropumps—past, progress and future prospects,”
[5] H. T. G. VAN LINTEL, “A PIEZOELECTRIC MICROPUMP BASED ON MICROMACHINING OF SILICON,” Sensors and Actuators, v15, Oct, 1988, p153-167
[6] F. C. M. VAN DE POL, H. T. G. VAN LINTEL, M. ELWENSPOEK and J. H. J FLUITMAN, “A Thermopneumatic Micropump Based on Micro-engineering Techniques,” Sensors and Actuators A: Physical, v21, Feb, 1990 ,p198-202

延伸閱讀