透過您的圖書館登入
IP:3.147.89.85
  • 學位論文

以有機金屬化學氣相沉積法成長氮化鋁薄膜及其特性分析

MOCVD growth of AlN thin film and characteristic analysis

指導教授 : 籃山明

摘要


氮化鋁是未來製作半導體元件的重要材料之一,且具有寬能隙的特性,而成為近年各個團隊研究的材料,但因為氮化鋁和基板的晶格不匹配相當大,導致氮化鋁薄膜的品質相對來的差,影響元件的特性。在此實驗中以常壓式有機金屬化學氣相沉積法在矽及藍寶石基板(c-plane)上成長未摻雜及摻雜的氮化鋁薄膜,氮與鋁的來源分別為三甲基鋁以及氨氣,矽甲烷是摻雜矽的來源。此篇主要為研究成長溫度對氮化鋁薄膜結構的影響,以及摻雜量多寡對氮化鋁薄膜電性的影響。我們在三甲基鋁以及氨氣的環境下成長,並且控制成長溫度為900°C 到1100°C ,時間固定為三十分鐘。透過X-ray繞射(XRD) 分析氮化鋁薄膜在藍寶石及矽(111)基板上的變化,可以發現於矽(111)基板上從優取向為(002)面,且隨著溫度的上升而強度增強,在藍寶石基板上也發現成長溫度對成長面向有趣的變化。而對於歐姆接觸的部份也找到適當的條件為700度30秒做回火的動作。而電性方面透過霍爾(Hall)量測顯示出未摻雜 n型氮化鋁載子濃度為4.377E+14 cm-3,遷移率為2.175E+2 cm2/Vs,電阻率為3.04E-2 Ω-cm,以及摻雜後較佳的結果為載子濃度-9.435E+18 cm-3,遷移率為3.875E+2 Ω cm,電阻率為7.704E-3 Ω-cm。

並列摘要


Aluminum nitride (AlN) films were grown on Si(111) and c-plane sapphire (Al2O3) substrates by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using Trimethylaluminum (TMA) and ammonia (NH3) were used as Al and N sources. SiH4 as an n-type dopant gas. In this paper we investigate the effect of different growth temperature on films and different substrates and different growth temperature, different doping quantity. We measured the structure properties by powder x-ray diffraction (XRD) and scanning electron microscope (SEM). The electrical properties by Hall measurements. We can seen change of crystallographic planes on sapphire . And on the Si(111) growth temperature 900℃ increase to 1050℃. The crystallographic planes (002) intensity increase accompany growth temperature go up. And electrical of un-doped AlN thin film evaluates conductive n-type, with resistivity, Hall mobility, and electron concentration as 3.04E-2 Ω cm, 2.175E+2 cm2/Vs, and -4.377E+14 cm-3, respectively. And can seen high quality doped-AlN films, with resistivity, Hall mobility, and electron concentration as 7.704E-3 Ω-cm, 3.875E+2 cm2/Vs, and -9.435E+18 cm-3 , respectively.

並列關鍵字

MOCVD AlN Si-doped

參考文獻


[2] X.D. Wang, W. Jiang, M.G. Norton, K.W. Hipps, Thin Solid Films 251 (1994) 121.
[3] H. Morkoc, Nitride Semiconductors and Devices, Springer, NewYork, 1999, p. 17.
[5] Tummala RR. J Am Ceram Soc 1991;74(5):895.
[6] Nakamura S. Science 1998;282:956.
[8] Polman A. J Appl Phys 1997;82:1.

延伸閱讀