透過您的圖書館登入
IP:18.226.222.12
  • 學位論文

3-12GHz雙共振超寬頻低雜訊放大器分析與實現

The Analysis and Realization of 3-12GHz Ultra-Wideband Low Noise Amplifier by Dual-Resonance

指導教授 : 陳淳杰

摘要


本論文所設計之低雜訊放大器主要應用於3.1GHz~10.6GHz的超寬頻(UWB),並希望繼續擴展頻寬到12GHz,使3~12GHz頻率內的訊號都能使用此低雜訊放大器。   本論文採用台積電0.18 μm RFCMOS製程設計高增益的超寬頻低雜訊放大器(UWB LNA)。利用雙共振與電感串聯峰值技術擴展其頻率響應,並維持一定的功率增益、輸入阻抗匹配與雜訊指數。所設計之低雜訊放大器在3-12GHz的頻段中,在1.5V電源電壓的功率消耗值為12.03mW,其功率增益和雜訊指數分別13.2±1.5 dB與4.06±0.4 dB,輸入阻抗匹配(S11)與輸出阻抗匹配(S22)皆為小於-10dB。

並列摘要


The design of low noise amplifier in this paper is used in the ultra-wideband (UWB) of 3.1GHz to 10.6GHz, and hopes to continue to expand the bandwidth to 12GHz, so that signals in the frequency range of 3~12GHz can use this low noise amplifier.   A high power gain of ultra-wideband low noise amplifier based on TSMC 0.18 μm RFCMOS process is reported in this paper. It uses double resonance and inductive-series peaking technology to extend its frequency response and maintain power gain, input impedance matching and noise figure (NF). This designed has a power consumption value of 12.03mW at a 1.5V supply voltage in the 3-12GHz frequency band. Its power gain and noise figure are 13.2 ± 1.5 dB and 4.06 ± 0.4 dB. The input impedance matching (S11) and the output impedance matching (S22) are both less than -10dB.

參考文獻


[1] 羅文信, “超寬頻(UWB)通訊系統發展緣由簡介”,2004。
[2] S. Shekhar, J. S. Walling, and D. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424–2439, Nov. 2006.
[3] H. Zhang, X. Fan, and E. S. Sinencio, “A low-power, linearized, ultrawideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009.
[4] G. Sapone and G. Palmisano, “A 3-10-GHz low-power CMOS low noiseamplifier for ultra-wideband communication,” IEEE Trans. Microw. Theory Techn. , vol. 59, no. 3, pp. 678–686, Nov. 2011.
[5] C. T. Fu, C. N. Kuo, and S. S. Taylor, “Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching,” IEEE Trans. Microw. Theory Techn. , vol. 58, no. 4, pp. 795–806, Apr. 2010.

延伸閱讀