透過您的圖書館登入
IP:18.188.20.56
  • 學位論文

改質二氧化鈦奈米管陣列及其光催化水解產氫之研究

Modified Titanium Dioxide Nanotube Arrays and its Photocatalytic Reaction for Hydrogen Production

指導教授 : 王宏文

摘要


利用陽極氧化法,將超純度鈦金屬板製備成二氧化鈦奈米管陣列(Titania Nanotube Arrays, TNA),因TNA具有高的表面積和連續的電子傳遞路徑,為良好的光催化材料,本研究以此為基礎,利用C、Pt、Au和CdS改質二氧化鈦奈米管陣列,並探討材料對光催化活性之影響,應用於光催化水解產氫之實驗。 摻雜碳是以乙炔當碳源,在高溫500℃下鍛燒,形成摻雜碳之TNA,此結晶相仍以Anatase相為主,並因為碳的摻雜有抑制二氧化鈦相轉移溫度的效果,增加光催化活性之Anatase相的溫度使用範圍。接著利用微波法和濺鍍法分別將金與白金奈米粒子添加於TNA表面,其中以微波白金粒子的光催化活性為最佳,並在降解亞甲基藍實驗中,比TNA-pure增加20%的光催化效能。CdS則是利用浸泡法將具光催化活性的CdS添加於TNA表面,可觀察到當浸泡次數越多,則表面顏色由淺黃色逐漸變成深黃色,由CdS奈米粒子逐漸變成CdS片狀群聚。其中以浸泡15次之TNA所產生的光電流為最佳,可得1.462 mA/cm2,相較於TNA-pure的光電流為0.075 mA/cm2,可提升21.9倍。

並列摘要


Titanium oxide nanotube arrays (TNA) were fabricated from titanium foil by anodizing process. TNA was a good photocatalytic material because of its high surface area and continuous electron transfer path. This study focused on the materials of TNA, and modifications such as C, Pt, Au and CdS modified TNA. The photochemical catalysis of water splitting experiments using above materials for hydrogen generation were investigated. The doping of carbon into TNA was accomplished using acetylene environment and calcination at 500 ℃. The main crystalline phase of TNA was still anatase phase even after calcination over 700℃. It was found that carbon-doped TNA inhibits the phase transition from anatase to rutile, that enables significantly their photocatalytic activity range. The microwave method and sputtering technique were used for deposition of gold and Pt on TNA. TNA modified with gold or Pt nanoparticles using microwave exhibited photocatalytic activity higher than those obtained by sputtering in the degradation of methylene blue experiments. TNA-Pt increased 20% of the light catalytic performance than those of TNA-pure. CdS modified TNA was formed by the immersion method. When soaking in higher number of times, the surface color of TNA changed from light yellow to dark yellow. Immersion of TNA for 15 times in CdS solution generated 1.462 mA/cm2 photocurrent, compared to 0.075 mA/cm2 of TNA-pure increase of 21.9 times was obtained.

參考文獻


G. Lu; A. Linsebigler; J. T. Jr. Yates. Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. Journal of Physical Chemistry (1994), 98(45), 11733-8.
V. Zwilling; M. Aucouturier; E. Darque-Ceretti. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta (1999), 45, 921-929.
D. Gong; C. A. Grimes; O. K. Varghese; W. Hu; R. S. Singh; Z. Chen; E. C. Dickey. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research (2001), 16(12), 3331-3334.
G. K. Mor; O. K. Varghese; M. Paulose; N. Mukherjee; C. A. Grimes. Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research (2003), 18, 2588-2593.
A. Kudo; H. Kato; I. Tsuji. Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters (2004), 33, 1534.

被引用紀錄


陳耀宗(2012)。利用化學溶液法成長ZnO/TiO2及ZnO/CdS核殼奈米柱之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200702

延伸閱讀